
 

 

 
 

WinDali 
 

A Modeling and Simulation System for 
Microsoft Windows 

Version 3.00 
 

MORTEN JUEL SKOVRUP 
 
 
 
 
 

 
 
 



 



 Contents i 

WinDali Morten Juel Skovrup 

Contents 

1 Disclaimer ................................................................................................................... 1 
1.1 Contact information .............................................................................................................................1 

2 Version information ................................................................................................... 3 
2.1 Changes in version 3.00 .....................................................................................................................3 
2.2 Changes in version 2.20 .....................................................................................................................3 
2.3 Changes in version 2.10 .....................................................................................................................4 

3 Introduction ................................................................................................................ 5 
3.1 Typing convention ...............................................................................................................................6 
3.2 Terms used in this document ..............................................................................................................7 

4 System structure ........................................................................................................ 9 

5 Creating a simple model .......................................................................................... 11 
5.1 SetupProblem....................................................................................................................................15 
5.2 ModelEquations.................................................................................................................................16 
5.3 EndCalc.............................................................................................................................................16 
5.4 Compiling ..........................................................................................................................................18 
5.5 Simulation..........................................................................................................................................18 

6 Model file format....................................................................................................... 21 
6.1 Common parameters and datatypes.................................................................................................23 
6.2 SetupProblem....................................................................................................................................23 

6.2.1 SetupModel ................................................................................................................................24 
6.2.2 SetupState .................................................................................................................................24 
6.2.3 SetTimeFactor............................................................................................................................24 
6.2.4 SolverSettings ............................................................................................................................24 
6.2.5 Dynamic variables......................................................................................................................25 
6.2.6 States .........................................................................................................................................26 
6.2.7 Static variables...........................................................................................................................26 
6.2.8 Parameter pages........................................................................................................................28 
6.2.9 Initial Parameters .......................................................................................................................28 
6.2.10 Floating point parameters ........................................................................................................28 
6.2.11 Integer parameters...................................................................................................................30 
6.2.12 Boolean parameters.................................................................................................................31 
6.2.13 List parameters ........................................................................................................................32 
6.2.14 Enumerated parameters ..........................................................................................................33 
6.2.15 Enumerated choice parameters...............................................................................................34 
6.2.16 Explicit variables ......................................................................................................................36 
6.2.17 Action buttons ..........................................................................................................................36 
6.2.18 Info Labels................................................................................................................................37 
6.2.19 HideSampleTime......................................................................................................................37 
6.2.20 Model help file ..........................................................................................................................38 

6.3 PreCalc..............................................................................................................................................38 
6.3.1 SetStartState..............................................................................................................................38 
6.3.2 AddExplicitVar............................................................................................................................39 
6.3.3 SetSampleTime..........................................................................................................................39 

6.4 ModelEquations.................................................................................................................................39 
6.5 StateShift...........................................................................................................................................41 



ii Contents 

WinDali Morten Juel Skovrup 

6.6 OnStateChange................................................................................................................................ 42 
6.7 OnSolution ........................................................................................................................................ 42 
6.8 OnSample......................................................................................................................................... 42 
6.9 EndCalc ............................................................................................................................................ 44 
6.10 OnQuit ............................................................................................................................................ 44 
6.11 OnUIValueChange.......................................................................................................................... 45 

6.11.1 Running simulations from the model ....................................................................................... 47 
6.12 OnSaveSettings.............................................................................................................................. 48 
6.13 OnLoadSettings .............................................................................................................................. 48 
6.14 Using Initial parameters.................................................................................................................. 49 

6.14.1 SetInitial ................................................................................................................................... 51 
6.14.2 SetGuess................................................................................................................................. 52 
6.14.3 AddDynVar .............................................................................................................................. 52 
6.14.4 AddStatVar .............................................................................................................................. 53 

6.15 Mathematical text............................................................................................................................ 54 
6.16 Debugging ...................................................................................................................................... 55 

7 Common problems .................................................................................................. 56 

8 Using refrigerant equations .................................................................................... 57 

9 WinDali Model Editor ............................................................................................... 59 
9.1 Compiler Options .............................................................................................................................. 61 
9.2 Environment Options ........................................................................................................................ 64 

10 WinDali Simulation Interface................................................................................. 67 
10.1 Menu commands ............................................................................................................................ 70 
10.2 Online parameters .......................................................................................................................... 72 
10.3 Varying parameters ........................................................................................................................ 72 
10.4 Dali solver ....................................................................................................................................... 76 

11 Using Profiles in models ....................................................................................... 77 
11.1 Generating profiles ......................................................................................................................... 77 
11.2 Using profiles in a model ................................................................................................................ 79 

12 Using Post Process ............................................................................................... 81 

13 Distributing models ............................................................................................... 83 

14 References.............................................................................................................. 85 

Appendix A Used file types........................................................................................ 87 

Appendix B Files and directories created during installation................................. 89 
 
 



  1 Disclaimer 1 

WinDali Morten Juel Skovrup 

1 Disclaimer 
This software is provided “as is” and any express or implied warranties, including, but not 
limited to, the implied warranties of merchantability and fitness for a particular purpose are 
disclaimed. In no event shall Institute for Product Development or any person mentioned in this 
document be liable for any direct, indirect, incidental, special, exemplary, or consequential 
damages (including, but not limited to, procurement of substitute goods or services; loss of use, 
data, or profits; or business interruption) however caused and on any theory of liability, whether 
in contract, strict liability, or tort (including negligence or otherwise) arising in any way out of 
the use of this software, even if advised of the possibility of such damage. 
 

1.1 Contact information 
Morten Juel Skovrup 
Senior Engineer, Ph.D.  
 
Institute for Product Development  
Refrigeration and Energy Engineering  
The Technical University of Denmark (DTU)  
Nils Koppels Allé, Building 402  
DK-2800 Kgs. Lyngby 
Denmark 
 
Phone:   +45 45 25 41 20  
Fax:     +45 45 93 52 15  
e-mail:  mjs@ipu.dk  
Web:     http://www.ipu.dk  
 



2 1 Disclaimer 

WinDali Morten Juel Skovrup 

 



  2 Version information 3 

WinDali Morten Juel Skovrup 

2 Version information 

2.1 Changes in version 3.00 
The following changes and some bug-fixes have been made: 

• The software is no longer freeware 
• FreePascal editor has changed name to WinDali Model Editor, and a lot of changes have 

been made so that it is more a model editor than a general programming editor 
• The Simulation program has changed name to WinDali Simulation Interface 
• Features regarding time and plotting in the WinDali Simulation Interface have been 

changed/added – see the section for the WinDali Simulation Interface 
• Added a lot of (simplifying) changes to the model structure. 

o All extended parameter calls (for example AddFloatParamExt) does not take 
IndexOnPage as parameter any more. 

o Extended calls to AddDynamic, AddStatic etc. does not take format, precision 
and digit parameters any more. 

• The component modeling interface is no longer supported. 
• All datatypes have been changed to allow for change in floating point precision in the 

model (reserved for future versions). See chapter 6.1. 
• Explicit variables have been renamed to Implicit variables 
• Post Process and Profile Editor has been added. 
• All programs have been prepared for installation on a multiuser-system. 

2.2 Changes in version 2.20 
The following changes and some bug-fixes have been made: 
 

• The meaning of max-min values for static variables has been changed. They do not any 
longer affect only the user-interface – they are also used in the static-equation solver to 
limit the values of the static variables within the Newton-Raphson iterations. 

• The function AddStaticVarExt has been added. 
• Most Add… procedures have been changed to functions. They now return the number 

assigned to the variable/parameter added. 
• Try to right-click on the curve window in the simulation program. You will see a menu, 

which enables you to easier select the variables you want to plot. 
• In the simulation program on the General page a new option called “Remember points” 

has been added. If checked then all values of all variables in the curve window will be 
remembered – even if the variable is not selected (plotted). If “Remember points” is 
unchecked then only values of selected (plotted) variables will be stored. 



4 2 Version information 

WinDali Morten Juel Skovrup 

2.3 Changes in version 2.10 
The model file format has changed. This means that models build with previous versions have to 
be changed to make them work in version 2.10. Note that the changes do not affect the 
component file format, i.e. models created using components do not have to be changed. 
 
The changes all have to do with specifying the number of variables and parameters. It is no 
longer required (in fact it is not possible) to specify the number of for example dynamic 
variables by calling SetNumDynamic. The number of dynamic variables are automatically 
counted when you call AddDynamic. The same apply for parameters. 
 
More precisely the following functions are obsolete: 
 
SetNumActionBtns(Num : TInteger); 
SetNumBoolParams(Num : TInteger); 
SetNumChoice(EnumParam,ItemIndex,Num : TInteger); 
SetNumDynamic(Num : TInteger); 
SetNumEnumChoiceParams(Num : TInteger); 
SetNumEnumParams(Num : TInteger); 
SetNumExtra(Num : TInteger); 
SetNumFloatParams(Num : TInteger); 
SetNumInfoLabels(Num : TInteger); 
SetNumInitialParams(Num : TInteger); 
SetNumIntParams(Num : TInteger); 
SetNumListParams(Num : TInteger); 
SetNumStatic(StateNum,NumStatic : TInteger); 
 
And all the Add... functions have been changed, so that you no longer have to pass the variable 
number in the function call. For example: 
 
AddFloatParam(Num : TInteger;var Parameter : TFloat;DefaultValue : TFloat; 
              Name : PChar;ParamPage : TInteger); 
 
Has been changed to: 
 
AddFloatParam(var Parameter : TFloat;DefaultValue : TFloat; 
              Name : PChar;ParamPage : TInteger); 
 
See the details under the different functions in chapter 6. 
 



  3 Introduction 5 

WinDali Morten Juel Skovrup 

3 Introduction 
WinDali is a modeling and simulation system for Microsoft Windows™ 95, 98, ME, NT 4.0, XP 
or later. The basic features of the system are: 
 

• Solves a system of semi-explicit differential algebraic equations (DAE’s). 
• Solves initial value problems. 
• Handles discontinuities. 
• Equation based modeling. 
• Graphical simulation program. 
• Creates distributable files (exe-files). 
• Models can be created in practical any programming language (Pascal, C++, Fortran...). 
• A user-supplied solver may replace the accompanying equation solver. 

 
These issues will be covered in depth in the following chapters. 
 
Examples in this document are included in the \All users\Documents\Models\Demo directory. 
 
WinDali consists of four programs: 

1. WinDali Model Editor, in which the models are formulated – note that you can use 
Borland Delphi™, Microsoft Visual C++™ or another programming environment 
instead. 

2. WinDali Simulation Interface, in which the models are loaded, and the simulation 
performed. 

3. Post Process, for displaying saved binary data. 
4. Profile Editor, for creating profiles to be used in models. 

 
An important limitation in this version of WinDali is that it only handles semi-explicit DAE’s. 
This means that WinDali only can solve problems on the form: 

 
( ), , ,

0 ( , , , , )

d y f t x y p
d t

g t x y p s

=

=
 (2.1) 

 
The main reason for this limitation is that the solver that comes with this version has this 
limitation. A future release will include possibility to formulate implicit problems: 

 
0 , , , ,

0 ( , , , , )

d yf t x y p
d t

g t x y p s

 
=  

 
=

 (2.2) 

 
The notation used in equation (2.1) and (2.2), and the terms used in the rest of this document will 
be explained in the following. 



6 3 Introduction 

WinDali Morten Juel Skovrup 

3.1 Typing convention 
This report contains some examples written in source-code. The examples are all written in the 
programming language Object Pascal [3]. When this is the case the following typeface is used: 
 
Item Example of typeface: 
Source code constructor TOneObject.Create; 

var 
  AStr : string; 
  ANum : TInteger; 
begin 
  AStr := 'This is a string - next is a number'; 
  ANum := 10; 
end; 

Source code in text This is an example of source code in normal text 
 



  3 Introduction 7 

WinDali Morten Juel Skovrup 

3.2 Terms used in this document 

Term Explanation 
Dynamic variables Variables that appears differentiated (with respect to time) in the 

equations. The symbol y will be used for dynamic variables. 
Static variables Variables that do not appear differentiated in the equations. The symbol x 

will be used for static variables. 
Independent 
variable 

The variable that y is differentiated with respect to. Normally this equals 
time, and the symbol t is used for the independent variable. 

Parameters Quantities that are set to a constant before simulation. The symbol p will 
be used for parameters. 

States For example a valve may be in on of two states: Open or Closed. These 
logical states will normally change the equations describing the physical 
system. The number of logical states for a model is the number of different 
sets of equations used to define the model. The symbol s will be used for 
states. 

Discontinuities Discontinuities are a way to describe abrupt changes in the physical 
system that is modeled. For example, by describing the process of a valve 
suddenly closing as a discontinuity, one avoids describing in detail the 
valve position while it closes. A discontinuity indicates that the physical 
system shifts to another logic state. So describing abrupt changes as 
discontinuities involves a description of the possible states of the physical 
system. The conditions causing the change of logical state must also be 
formulated. 

Initial value 
problems 

A problem where the present state of the system is known, and the future 
state is to be determined. Problems that can be formulated as initial value 
problems can be solved by WinDali (note that initial value problems does 
not in general require that the independent variable is time).  

DAE Differential Algebraic Equation. An equation system that consists of both 
an ordinary differential equation and an algebraic equation, for example: 
d y x
d t

x x y

=

= +

 

Solver The numeric code that solves the system of DAE’s. The solver integrates 
the differential equations, solves the algebraic equations and is handling 
discontinuities. 

 



8 3 Introduction 

WinDali Morten Juel Skovrup 

 
 



  4 System structure 9 

WinDali Morten Juel Skovrup 

4 System structure 

Simulation
programCompiler

Model file
format

Solver file
format Compiler

Free Pascal

Borland Delphi ®

C

Fortran

C++

DLL

DLL

 
 

Figure 1. Structure of modeling system 
 
Figure 1 shows the structure of the simulation system. The principle behind the structure of the 
simulation system is that all modules, or boxes in Figure 1, should be replaceable. The shadowed 
boxes in the structure are file formats or protocols that specify the interface between the other 
modules, i.e. when for example the structure of the Model file is fixed, third party programs 
could replace everything below and above the Model file box. Another important feature is that 
the solver is replaceable. 
 
The boxes labeled Compiler are responsible for converting a file to some binary representation. 
In practice the boxes represents standard available compilers, capable of building Windows 
DLL’s (Dynamic Link Libraries). 
 



10 4 System structure 

WinDali Morten Juel Skovrup 

The different modules in Figure 1 have the following meaning: 
 
Module Explanation 
Model file format A file written in a standard programming language with a specified 

interface to the Simulation module. 
Simulation program A GUI application which is displaying the results of a simulation to 

the user as Graphs, animations, numbers, etc. 
Solver The numerical code which is solving the equations specified in the 

Model file. 
Solver file format A file format with a specified interface understood by the Simulation 

module. 
 
In the current release of WinDali, the user starts at the model file level, specifying the model in a 
standard programming language. With the program comes a Pascal compiler, which is freeware, 
but other programming languages can be used. 



  5 Creating a simple model 11 

WinDali Morten Juel Skovrup 

5 Creating a simple model 
This chapter describes the process of creating a simple model in the WinDali Model Editor. Only 
the basic features in the Model file format will be described, the details are left to chapter 6. 
 
Suppose you want to cool a block of some material, as showed in Figure 2: 
 

, , ,pV c Tρ

,h A
aT

Q

 
 

Figure 2. Cooling a block of some material 
 
The block has density ρ, volume V, specific heat cp and temperature T. The block is exposed to 
the ambient temperature Ta (constant) and has the surface area A. The heat transfer coefficient 
between the block and the surroundings is h (constant), and it is assumed that the block has a 
spatial uniform temperature at all times. This assumption is also known as the lumped 
capacitance method, and the error introduced by the assumption is small if the Biot number is 
less than 0.1. 
 
The Biot number is defined as: 

 ch LBi
λ

=  (4.1) 

Where Lc is a characteristic length calculated as cL V A=  and λ is the conductivity of the 
material. 
 
The energy balance for the problem is: 

 ( )p a
d TVc h A T T
d t

ρ = −  (4.2) 

For this problem there is one dynamic variable T and 7 parameters , , , , ,p aV c h A Tρ  and λ (we 
will also calculate the Biot number to evaluate the uniform temperature assumption) 
 
To create the model file you have to go through the following steps: 
 

1. Open WinDali Model Editor 
2. Select File|New|New Model 

 
This will bring up the following dialog: 



12 5 Creating a simple model 

WinDali Morten Juel Skovrup 

 
 

Figure 3. Create model dialog 
 
Here you specify the name of your model and the directory where your files should be located. 
As default the program selects the Models directory, which is located in the directory where you 
installed WinDali. For now input “Test” as the model name, and add “\TestDir” to the default 
model directory: 
 

 
 

Figure 4. Create model dialog - continued 
 
This will create a basic Model: 
 

 



  5 Creating a simple model 13 

WinDali Morten Juel Skovrup 

 
 

Figure 5. WinDali Model Editor 
 
ModelMain.pp is the file where you specify your problem in the Model Editor. The file Test.pp 
(see the Model Manager) is the main file in your model, and should not be edited. 
 
The ModelMain.pp file looks like this: 
 

Project Manager 

Model Editor 

Message Window 



14 5 Creating a simple model 

WinDali Morten Juel Skovrup 

  unit ModelMain; 
 
  interface 
 
  uses 
    mjsDLLTypes,UmjsKernelTypes; 
 
  {$I ModelInterface.inc} 
  implementation 
 
  procedure SetupProblem; 
  begin 
    SetupModel('Model name here',0,3600); 
  end; 
  procedure PreCalc(Time : TFloat; State : TInteger); 
  begin 
  end; 
  procedure ModelEquations(Time : TFloat; State : TInteger; 
    var R : array of TFloat; var YDot : array of TFloat); 
  begin 
  end; 
  procedure StateShift(Time : TFloat; State : TInteger; 
    var G : array of TFloat); 
  begin 
  end; 
  procedure OnStateChange(Time : TFloat; OldState,NewState : TInteger); 
  begin 
  end; 
  procedure OnSolution(Time : TFloat; State : TInteger); 
  begin 
  end; 
  procedure OnSample(Time : TFloat; var State : TInteger); 
  begin 
  end; 
  procedure EndCalc(Time : TFloat; State : TInteger); 
  begin 
  end; 
  procedure OnQuit; 
  begin 
  end; 
  procedure OnUIValueChange(UIType : TInteger; Num,State,Choice : TInteger; 
    Value : TFloat); 
  begin 
  end; 
  procedure OnSaveSettings(FileName : PChar); 
  begin 
  end; 
  procedure OnLoadSettings(FileName : PChar); 
  begin 
  end; 
 
  end. 
 
 
 
The task is now to fill out the 12 procedures defined in ModelMain.pp. The procedures and the 
functions you can call are described in detail in chapter 6. For the simple problem at hand you 
only have to worry about SetupProblem, ModelEquations and EndCalc.  



  5 Creating a simple model 15 

WinDali Morten Juel Skovrup 

First you have to define the variables and parameters so Free Pascal knows about them. This is 
done by writing the following right after implementation: 
 
  implementation 
  const 
    Rho    = 8000; 
    Cp     = 480; 
    Lambda = 15; 
    V      = 0.001; 
    A      = 0.06; 
    h      = 10; 
    Ta     = 20; 
  var 
    T  : TFloat; 
    Bi : TFloat; 

5.1  SetupProblem 
In the procedure SetupProblem you have to tell the system about the variables, parameters and 
states in your problem. This also specifies the user-interface of the Simulation Interface program. 
 
You tell the system about your problem by calling a number of predefined functions. The ones 
you need to know about for this simple problem will be shortly explained (details are given in 
chapter 6). 
 
SetupModel(Title : PChar; TStart,TEnd : TFloat); 

This function specifies the title of your problem and the time you want to simulate. For 
this simple problem, let us say that you want to simulate 1000 seconds so you should call 
SetupModel like this: 

SetupModel('Simple problem',0,1000); 
 
AddDynamic(var Variable : TFloat; InitalValue : TFloat; 
  Name,LongName : PChar); 

This function is used to specify detailed information about each of the dynamic variables 
in the problem. The individual parameters are explained in detail in chapter 6. There is 
only one dynamic variable and lets say the initial value is 100 °C: 

AddDynamic(T,100,'T','Temperature [°C]'); 
 
AddExplicit(var Variable : TFloat; Name : PChar; DoPlot : TBoolean); 

Add variables you can calculate explicitly, but want to display the value of: 
AddExplicit(Bi,'Biot number',False); 
 
This completes the SetupProblem procedure. 



16 5 Creating a simple model 

WinDali Morten Juel Skovrup 

5.2 ModelEquations 
In ModelEquations you specify the equations. The heading looks like this: 
 
procedure ModelEquations(Time : TFloat; State : TInteger; 
  var R : array of TFloat; var YDot : array of TFloat); 
 
This procedure is called every time the solver needs to do calculations on your model. The 
parameters in the procedure heading are: 

• Time The current simulation time (in seconds) 
• State The current state (as there is only one state in this example, this will always be 

equal to 1) 
• R A zero-based vector where you should return a residual for each of the static 

equations in your model. As there are no static equations in this model, R can be 
ignored. 

• YDot A zero-based vector where you should return the derivatives of the dynamic 
variables in your model. 

 
A zero-based vector means that the first place in the vector is indexed 0, the second place 1 and 
so on. For the simple model there is only 1 dynamic variable and no static variables. Note that 
because of the registration of the dynamic variable (calling AddDynamic), the Pascal variable T  
will always have the correct and updated values when ModelEquations is called. 
 
If equation (4.2) is arranged so the derivative is isolated, the programming ModelEquations of 
is straightforward: 

 ( )a
p

d T h A T T
d t V cρ

= −  (4.3) 

  procedure ModelEquations(Time : TFloat; State : TInteger; 
    var R : array of TFloat; var YDot : array of TFloat); 
  begin 
    YDot[0] := h*A/(Rho*V*Cp)*(Ta-T); 
  end; 

 
This concludes the ModelEquations procedure. 

5.3 EndCalc 
EndCalc is called once at the end of the simulation. The only thing left to be calculated is the 
Biot number: 
 
  procedure EndCalc(Time : TFloat; State : TInteger); 
  begin 
    Bi := h*V/(A*Lambda); 
  end; 

 
 



  5 Creating a simple model 17 

WinDali Morten Juel Skovrup 

In full the file ModelMain.pp looks like this: 
  unit ModelMain; 
 
  interface 
 
  uses 
    mjsDLLTypes,UmjsKernelTypes; 
 
  {$I ModelInterface.inc} 
  implementation 
  const 
    Rho = 8000; Cp = 480; Lambda = 15; V = 0.001; A = 0.06; h = 10; Ta = 20; 
  var 
    T,Bi : TFloat; 
 
  procedure SetupProblem; 
  begin 
    SetupModel('Simple problem',0,1000); 
    AddDynamic(T,100,'T','Temperature [°C]'); 
    AddExplicit(Bi,'Biot number',False); 
  end; 
  procedure PreCalc(Time : TFloat; State : TInteger); 
  begin 
  end; 
  procedure ModelEquations(Time : TFloat; State : TInteger; 
    var R : array of TFloat; var YDot : array of TFloat); 
  begin 
    YDot[0] := h*A/(Rho*V*Cp)*(Ta-T); 
  end; 
  procedure StateShift(Time : TFloat; State : TInteger; 
    var G : array of TFloat); 
  begin 
  end; 
  procedure OnStateChange(Time : TFloat; OldState,NewState : TInteger); 
  begin 
  end; 
  procedure OnSolution(Time : TFloat; State : TInteger); 
  begin 
  end; 
  procedure OnSample(Time : TFloat; var State : TInteger); 
  begin 
  end; 
  procedure EndCalc(Time : TFloat; State : TInteger); 
  begin 
    Bi := h*V/(A*Lambda); 
  end; 
  procedure OnQuit; 
  begin 
  end; 
  procedure OnUIValueChange(UIType : TInteger; Num,State,Choice : TInteger; 
    Value : TFloat); 
  begin 
  end; 
  procedure OnSaveSettings(FileName : PChar); begin end; 
  procedure OnLoadSettings(FileName : PChar); begin end; 
  end. 



18 5 Creating a simple model 

WinDali Morten Juel Skovrup 

5.4 Compiling 
Now it is time to compile the model. Select the Model|Compile menu and note if there is any 
error messages in the Message window. If you have made an error you can double-click it in the 
Message window and the error will be highlighted in your code. If no errors occurred you can 
run a simulation by selecting the Simulate|Run menu. The resulting model file will have the 
extension “.mdl”. 

5.5 Simulation 
When you select the Simulate|Run menu in the Model Editor you start the simulation program. If 
the model file was created exactly as described above, you will see the following screen: 
 

 
 

Figure 6. The Simulation Interface program 
 
In the General page the simulation time can be set by the user (i.e. the values specified in the call 
to SolverSettings was only default values).  
 
The rest of the values in the General, Cases and Solver pages will be explained in chapter 10. 
 
To start the simulation, select the Simulation|Start menu or press the <Play> button on the 
toolbar. In either case the result should look like this: 
 



  5 Creating a simple model 19 

WinDali Morten Juel Skovrup 

 
 

Figure 7. Simulation result. 
 
This shows that the simulation time was to short. Try increasing the simulation end-time to for 
example 1 day (86400 seconds), and run the simulation again. 
 
If you want to change for example the density Rho to 1000, then you have to go back to the 
Model Editor, change Rho and recompile the model. Instead you could install Rho as a parameter 
in the model (together with the rest of the constants you defined in the model). This is done by 
changing the model to the following: 
 



20 5 Creating a simple model 

WinDali Morten Juel Skovrup 

  implementation 
  var 
    T,Bi                   : TFloat; 
    Rho,Cp,Lambda,V,A,h,Ta : TFloat; 
 
  procedure SetupProblem; 
  begin 
    SetupModel('Simple problem',0,1000); 
    SetParamPages('Parameters'); 
    AddDynamic(T,100,'T','Temperature [°C]'); 
    AddExplicit(Bi,'Biot number',False); 
    AddFloatParam(Rho,8000,'Density [kg/m^3]',1); 
    AddFloatParam(Cp,480,'Specific heat [J/kg K]',1); 
    AddFloatParam(Lambda,15,'Conductivity [W/m K]',1); 
    AddFloatParam(V,0.001,'Volume [m^3]',1); 
    AddFloatParam(A,0.06,'Surface area [m^2]',1); 
    AddFloatParam(h,10,'Heat transfer coefficient [W/m^2 K]',1); 
    AddFloatParam(Ta,20,'Ambient temperature [°C]',1); 
  end; 

 
Note that now Rho,Cp etc. are defined as Pascal variables instead of constants, and that a call to 
SetParamPages has been added. 
 
When you compile the model and run it, you will see the following page in the Simulation 
Interface program: 
 

 
 
Now you can change the parameters in the Simulation Interface program, without having to 
recompile the model. 



  6 Model file format 21 

WinDali Morten Juel Skovrup 

6 Model file format 
A model file has 12 procedures, which the user should fill out to specify the problem to be 
solved. The following figure shows the sequence in which the procedures are called from the 
simulation program: 
 

1) Load
Model

2) SetUpProblem

3) Start

4) PreCalc

5) Stop 10) EndCalc

6) ModelEquations

7) StateShift

9) OnSolution8) OnSolution

Yes

No

NoYes

State Change
Procedure

Sample Check
Procedure

Sample Check
Procedure

 
 

Figure 8. Calling sequence for the procedures in the model file. 
 
The rounded rectangles in Figure 8 represent user-actions in the Simulation program. 
Note that the boxes 6 and 7 in general are called several times at each time step. This is because 
the solver iterates to find a solution. The procedure OnQuit, which is not represented in figure 8, 
is called when the user closes the simulation program or selects another model. The procedures 
OnUIValueChange, OnSaveSettings and OnLoadSettings all have to do with controlling the 
user-interface. They will be explained later. 
 



22 6 Model file format 

WinDali Morten Juel Skovrup 

The calling sequence with no state shift is straightforward (for now ignore the Sample Check 
Procedure regarding Sample time – it will be covered in chapter 6.8). But the calling sequence 
with a state shift needs some explanation. 
 
The State Change Procedure looks like this: 
 

OnStateChange ModelEquations OnSolution

State Change Procedure

 
 

Figure 8a. State Change Procedure. 
 
Lets say that we want to model a valve that is On when a temperature T is above 10°C, else it is 
Off. We want to record the temperature and the On-Off signal to the valve, and the initial 
temperature is 20°C. A plot of the temperature and the On-Off signal could look like this: 
 

T

On

Off

10°C

20°C

2a

2b

t2t1  
Figure 9. Temperature and On-Off signal. 

 
When the solver reaches t2 where the valve goes On, it first calls OnSolution (block 8) to inform 
the model file that a solution has been found. But at t2 the equation system also shift state, which 
means that the solver has to start all over, and possibly with a new set of static equations.  
 
The static equations have to be solved before the solver continues, and for this the solver needs 
guesses on the static variables.  
 
In SetupProblem (as will be clear in chapter 6) default guesses on the static variables are given 
for each state, but if these guesses for some reason need to change, OnStateChange (see Figure 
8a) is called. After OnStateChange, ModelEquations is called to solve the static equations in 
the new state, and before the solver continues, OnSolution is called to enable plotting of point 
2b in Figure 9. 
 
In the following the 12 procedures will be covered in detail. 
 



  6 Model file format 23 

WinDali Morten Juel Skovrup 

Before any of the 12 procedures are filled out, all the variables and parameters in the model 
should be declared in standard Pascal fashion (see chapter 5). All Pascal floating-point variables 
should be in TFloat format. 

6.1 Common parameters and datatypes 
The custom datatypes used in WinDali are the following: 
 

Datatype Standard Pascal datatype 
TFloat Double 
TInteger Integer 
TBoolean WordBool 

 
You can use the Standard Pascal datatypes if you prefer, but the meaning of TFloat, TInteger 
and TBoolean might change in future versions of WinDali. 
 
The following parameter appears in several of the following function calls: 
 
ALabel  Label to add before or after the variable 
   If first character in ALabel is 
    “-“:  Then the label is displayed before the variable and a line is   
     added above the label. 
   else : The label is displayed before the variable and no line is added. 
   If ALabel equals “_” then a line will be drawn after the variable. 

6.2 SetupProblem 
In SetupProblem the model is specified so the solver knows the number of dynamic and static 
variables. But the user-interface in the Simulation Interface program is also created from the 
specifications. 
 
To specify the model, a number of functions are available.  
 
Most of the Add… functions have two versions: a simple and an extended. The extended functions 
give more control of the appearance of the user-interface in the Simulation Interface program. 
The extended functions end on Ext – for example: 
AddDynamic  (simple version) 
AddDynamicExt (extended version) 
 
The available functions are explained in the following sections. 



24 6 Model file format 

WinDali Morten Juel Skovrup 

6.2.1 SetupModel 
Heading 
  procedure SetupModel(Title : PChar; TStart,TEnd : TFloat); 
Parameters 

Title   The title of the model. 
TStart   Default start time of the simulation. 
TEnd   Default end time of the simulation. 

Example 
SetupModel('Example',0,3600); 

6.2.2 SetupState 
Heading 
  procedure SetupState(ShowStartState : TBoolean; StartState : TInteger); 
Parameters 

ShowStartState Let the user select the start state or not. If set to false then you  
    can call SetStartState in PreCalc See 6.2.17. 
StartState  Default initial state of the model. 

Example 
  SetupState(True,1); 

6.2.3 SetTimeFactor 
Heading 
  procedure SetTimeFactor(TimeFac : TFloat); 
Parameters 

TimeFac   Factor to divide time with on plots and in files. I.e. if you set TimeFac to  
    1000, you will internally in the model calculate in milliseconds. TStart  
    and TEnd should be specified in the same units as the internal time. I.e. if  
    TimeFac is  1000, then TEnd = 1000 means 1 second. 

Example 
SetTimeFactor(1); 

6.2.4 SolverSettings 
SolverSettings are kept for backward compatibility – use SetupModel, SetupState and 
SetTimeFactor instead. 



  6 Model file format 25 

WinDali Morten Juel Skovrup 

6.2.5 Dynamic variables 
AddDynamic adds information about a dynamic variable to the solver and the Simulation 
program. 
 
Heading 

function AddDynamic(var Variable : TFloat; InitalValue : TFloat;  
  Name,LongName : PChar) : TInteger; 
function AddDynamicExt(var Variable : TFloat; InitalValue : TFloat;  
  Name,LongName : PChar; Min,Max : TFloat; Show : TBoolean;  
  ALabel : PChar) : TInteger; 

Parameters 
Variable The declared pascal variable, which represents the variable in the model. 
InitalValue Default initial value of the dynamic variable. 
Name  Short name that appears on plots. 
LongName Long name, appears on the Initial page in the Simulation Interface program. 
Min  Minimum value the user can set the variable to. 
Max  Maximum value the user can set the variable to. 
   If Min = Max = 0 then no limits are set. 
Show  True: Display the dynamic variable in interface. 

    Plot/save of this variable is available to the user. 
   False: Do not display the dynamic variable in interface. 
    Plot/save of this variable is not available to the user. 
   See also chapter 6.14. 
Return value 

The number assigned to the dynamic variable. Can be used to identify the variable in calls to 
SetInitial. 

Example 
implementation 
var 
  Y1,Y2 : TFloat; 
procedure SetupProblem; 
begin 
  AddDynamicExt(Y1,1,'DynVar1','Dynamic variable 1',1,10,True, 
                '-Test dynamic'); 
  AddDynamicExt(Y2,1,'DynVar2','Dynamic variable 2',1,10,True, 
                '_'); 
end; 

 
Will produce the following output on the Initial page in the simulation program: 
 

 
 
(Note that the checkbox “Update initial values” is automatically created). 



26 6 Model file format 

WinDali Morten Juel Skovrup 

6.2.6 States 
SetStates defines the number and names of the states in the model. 
 
Heading 

procedure SetStates(Names : PChar); 
Parameters 

Names  Comma separated string specifying the names of the states. If a state name  
   contains spaces then enclose the name in ””. 
Example 
  //Three states are created: 

SetStates('"Valve on",Off,"Valve Saturated"'); 

6.2.7 Static variables 
AddStatic adds information about a static variable in a state. 
 
Heading 

function AddStatic(State : TInteger; var Variable : TFloat;   
  InitalGuess : TFloat; Name,LongName : PChar) : TInteger; 
function AddStaticExt(State : TInteger; var Variable : TFloat;   
  InitalGuess : TFloat; Name,LongName : PChar; Min,Max : TFloat; 
  DoPlot : TBoolean; ALabel : PChar) : TInteger; 

Parameters 
State   The state the static variable belongs to. 
Variable  The declared pascal variable, which represents the variable in the model. 
InitialGuess The default guess on the static variable. 
Name   Short name that appears on plots. 
LongName  Long name, appears on the Guesses page in the Simulation Interface  
    program. 
Min   Minimum value the user can set the variable to (and limit for the static  
    equation solver). 
Max   Maximum value the user can set the variable to (and limit for the static  
    equation solver). 
    If Min = Max = 0 then no limits are set. 
DoPlot   True: Plot/save is available to the user for this variable 
    False: Plot/save is not available to the user for this variable. 

Return value 
The number assigned to the static variable. Can be used to identify the variable in calls to 
SetGuess. 

Example 
implementation 
var 
  X11,X12,X21,X22,X23,X31 : TFloat; 
procedure SetupProblem; 
begin 
  AddStaticExt(1,X11,0,'Stat11','Static Var 11',0,0,True,''); 
  AddStaticExt(1,X12,0,'Stat12','Static Var 12',0,0,True,''); 
  AddStaticExt(2,X21,0,'Stat21','Static Var 21',0,0,True,''); 
  AddStaticExt(2,X22,0,'Stat22','Static Var 22',0,0,True,''); 
  AddStaticExt(2,X23,0,'Stat23','Static Var 23',0,0,True,''); 
  AddStaticExt(3,X31,0,'Stat31','Static Var 31',0,0,True,''); 
end; 



  6 Model file format 27 

WinDali Morten Juel Skovrup 

 
If you follow the examples in 6.2.6 and this section, you will see the following result on the 
Guesses page in the simulation program: 
 

 
 
If you have static variables that are common to several states, you can add the required 
information by calling AddCommonStatic: 
 
Heading 

procedure AddCommonStatic(var Variable : TFloat; 
  InitalGuess : TFloat; Name,LongName : PChar; CommonStates : PChar); 
procedure AddCommonStaticExt(var Variable : TFloat; InitalGuess : TFloat;  
  Name,LongName : PChar; CommonStates : Pchar; Min,Max : TFloat;  
  DoPlot : TBoolean; ALabel : PChar); 

Parameters 
Variable  The declared pascal variable, which represents the variable in the model. 
InitialGuess The default guess on the static variable. 
Name   Short name that appears on plots. 
LongName  Long name, appear on Guess page in Simulation Interface program. 
CommonStates Comma separates string of the states the static variable exists in. If the  
    variable exists in all states, CommonStates should be empty. 
Min   Minimum value the user can set the variable to. 
Max   Maximum value the user can set the variable to. 
    If Min = Max = 0 then no limits are set. 
DoPlot   True: Plot/save is available to the user for this variable 
    False: Plot/save is not available to the user for this variable. 

Example 
implementation 
var 
  X13,XAll : TFloat; 
procedure SetupProblem; 
begin 
   {add X13 to state 1 and 3:} 
  AddCommonStaticExt(X13,0,'Stat13','Static Var 13','1,3',0,0,True,''); 
   {add XAll to all states:} 
  AddCommonStaticExt(XAll,0,'StatAll','Static Var All','',0,0,True,''); 
end; 



28 6 Model file format 

WinDali Morten Juel Skovrup 

6.2.8 Parameter pages 
SetParamPages sets the number and names of the parameter pages to create in the Simulation 
Interface program. 
 
Heading 

procedure SetParamPages(Names : PChar); 
Parameters 

Names Comma separated string specifying the names of the parameter pages. If a page name  
  contains spaces then enclose it in "". 

Example 
SetParamPages('Parameters,Settings,"Control settings"'); 

6.2.9 Initial Parameters 
These kinds of parameters are special as they appear on the Initial page in the Simulation 
Interface program. Initial value parameters will be further discussed in chapter 6.14. 

6.2.10 Floating point parameters 
AddFloatParam adds information about a floating-point parameter. 
 
Heading 

function AddFloatParam(var Parameter : TFloat; DefaultValue : TFloat;  
  Name : PChar; ParamPage : TInteger) : TInteger; 
function AddFloatParamExt(var Parameter : TFloat; DefaultValue : TFloat;  
  Name : PChar; ParamPage : TInteger; Min,Max : TFloat;  
  ALabel : PChar) : TInteger; 

Parameters 
Parameter  The declared pascal variable, which represents the parameter in the  
    model. 
DefaultValue The default value of the parameter. 
Name   Text that appears in the Simulation Interface program. 
ParamPage  The number of the parameter page to place the parameter on. 
Min   Minimum value the user can set the parameter to. 
Max   Maximum value the user can set the parameter to. 
    If Min = Max = 0 then no limits are set. 
ALabel   See 5.1. 

Return value 
The number assigned to the parameter. Can be used to identify the parameter in calls to 
SetUIValue. 



  6 Model file format 29 

WinDali Morten Juel Skovrup 

Example 
implementation 
var 
  Rho,Cp,Lambda,V,A,h,Ta : TFloat; 
procedure SetupProblem; 
begin 
  SetParamPages('Material,Geometry,"Heat transfer"'); 
  AddFloatParamExt(Rho,8000,'Density [kg/m^3]',1,0,20000,''); 
  AddFloatParamExt(Cp,480,'Specific heat [J/kg K]',1,0.001,5000,''); 
  AddFloatParamExt(Lambda,15,'Conductivity [W/m K]',1,0.0001,5000,''); 
  AddFloatParamExt(V,0.001,'Volume [m^3]',2,0.000001,1000,''); 
  AddFloatParamExt(A,0.06,'Surface area [m^2]',2,0.000001,10000,''); 
  AddFloatParamExt(h,10,'Heat transfer coefficient [W/m^2 K]', 
                   3,0.00001,100000,''); 
  AddFloatParamExt(Ta,20,'Ambient temperature [°C]',3,0,0,''); 
end; 

 
Will produce the following result in the Simulation Interface program: 
 

 
 

 
 

 



30 6 Model file format 

WinDali Morten Juel Skovrup 

6.2.11 Integer parameters 
Integer parameters differ from floating point parameter in that the user only is allowed to input 
Integer values. 
 
AddIntParam adds information about an Integer parameter. 
 
Heading 

function AddIntParam(var Parameter : TInteger; DefaultValue : TInteger;  
  Name : PChar; ParamPage : TInteger) : TInteger; 
function AddIntParamExt(var Parameter : TInteger; DefaultValue : TInteger;  
  Name : PChar; ParamPage : TInteger; Min,Max : TInteger;  
  ALabel : PChar) : TInteger; 

Parameters 
Parameter  The declared pascal variable, which represents the parameter in the  
    model. 
DefaultValue The default value of the parameter. 
Name   Text that appears in the Simulation Interface program. 
ParamPage  The number of the parameter page to place the parameter on. 
Min   Minimum value the user can set the parameter to. 
Max   Maximum value the user can set the parameter to. 
    If Min = Max = 0 then no limits are set. 
ALabel   See 5.1. 

Return value 
The number assigned to the parameter. Can be used to identify the parameter in calls to 
SetUIValue. 

Example 
implementation 
var 
  NSec : TInteger; 
procedure SetupProblem; 
begin 
  AddIntParamExt(NSec,10,'Number of sections',1,1,1,100,''); 
end; 

 
This will add an Integer parameter that looks like this: 
 

 



  6 Model file format 31 

WinDali Morten Juel Skovrup 

6.2.12 Boolean parameters 
Boolean parameters are logical parameters that have the value True or False. 
 
AddBoolParam adds information about a Boolean parameter. 
 
Heading 

function AddBoolParam(var Parameter : TBoolean; DefaultValue : TBoolean;  
  Name : PChar; ParamPage : TInteger) : TInteger; 
function AddBoolParamExt(var Parameter : TBoolean; DefaultValue : TBoolean;  
  Name : PChar; ParamPage : TInteger; ALabel : PChar) : TInteger; 

Parameters 
Parameter  The declared pascal variable, which represents the parameter in the  
    model. 
DefaultValue The default value of the parameter. 
Name   Text that appears in the Simulation Interface program. 
ParamPage  The number of the parameter page to place the parameter on. 
ALabel   See 5.1. 

Return value 
The number assigned to the parameter. Can be used to identify the parameter in calls to 
SetUIValue. 

Example 
implementation 
var 
 TestBool : TBoolean; 
 
procedure SetupProblem; 
begin 
  AddBoolParamExt(TestBool,False,'TestBool',3,''); 
end; 
 
This will add a Boolean parameter that looks like this: 
 

 



32 6 Model file format 

WinDali Morten Juel Skovrup 

6.2.13 List parameters 
List parameters are parameters that can have one of several values displayed to the user in a 
listbox. 
 
AddListParam adds information about a list parameter. 
 
Heading 

function AddListParam(var Parameter : TInteger; DefaultIndex : TInteger;  
  Items,Name : PChar; ParamPage : TInteger) : TInteger; 
function AddListParamExt(var Parameter : TInteger; DefaultIndex : TInteger;  
  Items,Name : PChar; ParamPage : TInteger; ALabel : PChar) : TInteger; 

Parameters 
Parameter  The declared pascal variable, which represents the parameter in the  
    model. 
DefaultIndex Index of the default selected item. The first item has index 1. 
Items   A comma separated string with the items the listbox should contain.  
    If an item contains spaces it should be enclosed in "". 
    When the simulation starts, Parameter will contain the index of the  
    selected parameter. 
Name   Text that appears in the Simulation Interface program. 
ParamPage  The number of the parameter page to place the parameter on. 
ALabel   See 5.1. 

Return value 
The number assigned to the parameter. Can be used to identify the parameter in calls to 
SetUIValue. 

Example 
implementation 
var 
  List : TInteger; 
 
procedure SetupProblem; 
begin 
  AddListParamExt(List,1,'"Item 1","Item 2","Item 3","Item 4"', 
                  'TestList', 1,''); 
end; 

 
This will add a list parameter that looks like this: 
 

 



  6 Model file format 33 

WinDali Morten Juel Skovrup 

6.2.14 Enumerated parameters 
Enumerated parameters are very similar to list parameters, except that the items will be displayed 
in a combobox instead of a listbox. 
 
AddEnumParam adds information about an enumerated parameter. 
 
Heading 

function AddEnumParam(var Parameter : TInteger; DefaultIndex : TInteger;  
  Items,Name : PChar; ParamPage : TInteger) : TInteger; 
function AddEnumParamExt(var Parameter : TInteger; DefaultIndex : TInteger;  
  Items,Name : PChar; ParamPage : TInteger; ALabel : PChar) : TInteger; 

Parameters 
See list parameters. 

Return value 
The number assigned to the parameter. Can be used to identify the parameter in calls to 
SetUIValue. 

Example 
implementation 
var 
  Enum : TInteger; 
 
procedure SetupProblem; 
begin 
  AddEnumParamExt(Enum,1,'"Item 1","Item 2","Item 3","Item 4"', 
                  'TestEnum',1,''); 
end; 

 
This will add a enumerated parameter that looks like this: 
 

 



34 6 Model file format 

WinDali Morten Juel Skovrup 

6.2.15 Enumerated choice parameters 
Enumerated choice parameters are used to create structures with multiple choices, and where 
each choice has a different number of parameters. For example can the UA value of a heat 
exchanger be specified by: 
1. An UA-value directly 
2. Dimensioning values of Q and T∆  (Q UA T= ⋅∆ ). 
 
AddEnumChoiceParam adds information about an enumerated choice parameter. Enumerated 
choice parameters are special, because besides AddEnumChoiceParam, another function has to be 
called to complete the specification. Enumerated choice parameters can be regarded as a 
combination of an enumerated parameter and a number of floating point parameters. This will be 
clear when an example is given below. 
 
Heading 

function AddEnumChoiceParam(var Parameter : TInteger;  
  DefaultIndex : TInteger; Items,Name : PChar;  
  ParamPage : TInteger) : TInteger; 
function AddEnumChoiceParam(var Parameter : TInteger;  
  DefaultIndex : TInteger; Items,Name : PChar; ParamPage : TInteger;  
  ALabel : PChar) : TInteger; 

Parameters 
Parameter  The declared pascal variable, which represents the parameter in the  
    model. 
DefaultIndex Index of the default selected item. The first item has index 1. 
Items   A comma separated string with the items the combobox should contain.  
    If an item contains spaces it should be enclosed in "". 
    When the simulation starts, Parameter will contain the index of the  
    selected parameter. 
Name   Text that appears in the Simulation Interface program. 
ParamPage  The number of the parameter page to place the parameter on. 
ALabel   See 5.1. 

Return value 
The number assigned to the parameter. Can be used to identify the parameter in calls to 
SetUIValue. 

 
AddChoice is used to add information for each of the choices for each of the items 
AddEnumChoiceParam. Note that AddChoice has to be called immediately after 
AddEnumChoiceParam. 
 



  6 Model file format 35 

WinDali Morten Juel Skovrup 

Heading 
function AddChoice(ItemIndex : TInteger; var Parameter : TFloat;  
  DefaultValue : TFloat; Name : PChar) : TInteger; 
function AddChoiceExt(ItemIndex : TInteger; var Parameter : TFloat;  
  DefaultValue : TFloat; Name : PChar; Min,Max : TFloat) : TInteger; 

Parameters 
ItemIndex  The index of the item the choice belongs to. 
Parameter  The declared pascal variable, which represents the parameter in the  
    model. 
DefaultValue The default value of the parameter. 
Name   Text that appears in the Simulation Interface program. 
Min   Minimum value the user can set the parameter to. 
Max   Maximum value the user can set the parameter to. 
    If Min = Max = 0 then no limits are set. 

Return value 
The number of the choice among the choices belonging to the item. Can be used to identify 
the choice in calls to SetUIValue. 

Example 
Taking the example where the UA value of a heat exchanger can be specified by: 
1. An UA-value directly 
2. Dimensioning values of Q and T∆  (Q UA T= ⋅∆ ). 

implementation 
var 
  Choice        : TInteger; 
  UA,QDim,DTDim : TFloat; 
procedure SetupProblem; 
begin 
  AddEnumChoiceParamExt(Choice,1,'UA,"Q_Dim,DT_dim"', 
                     'Specify UA value by specifying',1,''); 
  AddChoiceExt(1,UA,100,'UA value [W/K]',0,0); 
  AddChoiceExt(2,QDim,1000,'Q_dim [W]',0,0); 
  AddChoiceExt(2,DTDim,10,'DT_dim [K]',0,0); 
end; 

 
This will add an enumerated choice parameter that looks like this: 
 
a) When the user selects UA: 

 
b) When the user selects Q_dim,DT_dim: 
 

 



36 6 Model file format 

WinDali Morten Juel Skovrup 

6.2.16 Explicit variables 
These variables are not part of the equation system; but they can be plotted and saved with the 
dynamic and static variables. In other words: explicit variables are variables that can be 
calculated explicitly. 
 
AddExplicit adds information about an explicit variable. 
 
Heading 

function AddExplicit(var Variable : TFloat; Name : PChar;  
  DoPlot : TBoolean) : TInteger; 
function AddExplicitExt(var Variable : TFloat; Name : PChar;  
  DoPlot : TBoolean; ALabel : PChar) : TInteger; 

Parameters 
Variable The declared pascal variable, which represents the variable in the model. 
Name Text that appears in the Simulation Interface program. 
DoPlot True: The variable is plotted. 

False: The variable is added to the Results page when calculation is done. 
Return value 

The number assigned to the variable. Can be used to identify the variable in calls to 
SetUIValue. 

Example 
AddExtraExt(Bi,'Biot number',False,''); 

6.2.17 Action buttons 
Action buttons are buttons you can place on the user-interface. You are responsible for writing 
code, which responds when the user presses the button – this should be done in 
OnUIValueChange (see 6.11). You install buttons by calling AddActionBtn. 
 
Heading 

function AddActionBtn(Caption : PChar; ParamPage : TInteger) : TInteger; 
function AddActionBtnExt(Caption : PChar; ParamPage : TInteger;  
  ALabel : PChar) : TInteger; 

Parameters 
Caption   The caption of the action button. 
ParamPage  The number of the parameter page to place the button on. 
ALabel   See 5.1. 

Return value 
The number assigned to the button. Can be used to identify the button in calls to SetUIValue. 

Example 
AddActionBtnExt('Load properties',1,'Press to load parameters'); 
 

Will create a button, which looks like this: 
 

 



  6 Model file format 37 

WinDali Morten Juel Skovrup 

6.2.18 Info Labels 
Info labels are labels you can place on the user-interface, displaying some information to the 
user. You install info labels by calling AddInfoLabel. 
 
Heading 

procedure AddInfoLabel(Caption : PChar; ParamPage : TInteger) : TInteger; 
procedure AddInfoLabelExt(Caption : PChar; ParamPage : TInteger;  
  ALabel : PChar) : TInteger; 

Parameters 
Caption   The caption of the info label. 
ParamPage  The number of the parameter page to place the info label on. 
ALabel   See 5.1. 

Return value 
The number assigned to the label. Can be used to identify the label in calls to SetUIValue. 

Example 
AddInfoLabelExt('This is a message',1,''); 

6.2.19 HideSampleTime 
HideSampleTime can be used to hide information about fixed sample in the simulation program 
from the user.  
 
On the Solver page in the simulation program the used can select to run the simulation with fixed 
sample time. If you do not want the user to have this possibility you should call 
HideSampleTime. This could for example be the case if you want the user to input the sample 
time together with other parameters for a controller and not on the Solver page. In this case you 
should also call SetSampleTime in PreCalc (see chapter 6.3 and 6.8). 
 
Heading 

procedure HideSampleTime; 
Parameters 

None 
Example 

HideSampleTime; 



38 6 Model file format 

WinDali Morten Juel Skovrup 

6.2.20 Model help file 
As of version 1.37 it is possible to specify a help file for the model. The help file can be in any 
format as the simulation program executes the application, which is associated with the help file. 
 
The help file should be located in the same directory as the model. If the help file consists of 
several files then you should manually include files other than the installed help file when 
creating a distributable copy (see chapter 13). 
 
The help file is installed by calling the following procedure within SetupProblem: 
 
Heading 

procedure AddHelpFile(FileName : PChar); 
Parameters 

FileName Name of the help file (without directory information). 
Example 

AddHelpFile('Example.html'); 

6.3 PreCalc 
PreCalc is called just before the simulation is started. This procedure can be used to initiate 
variables, allocating memory etc. Furthermore PreCalc is used to specify initial values for 
dynamic variables based on initial value parameters, and to add static variables. This is treated in 
chapter 6.14. 
 
If you set the ShowStartState parameter in a call to SetupState to false, you can specify the 
initial state in PreCalc. This is done by calling SetStartState.  
 
You can also add explicit variables in PreCalc by calling AddExplicitVar and control the 
sample time by calling SetSampleTime. 

6.3.1 SetStartState 
Heading 

procedure SetStartState(Value : TInteger); 
Parameters 

Value Number of the initial state. 
Example 

SetStartState(1); 



  6 Model file format 39 

WinDali Morten Juel Skovrup 

6.3.2 AddExplicitVar 
Heading 
  function AddExplicitVar(var Variable : TFloat; Name : PChar;  
    DoPlot : TBoolean) : TInteger; 
  function AddExplicitVarExt(var Variable : TFloat; Name : PChar; DoPlot :  
    TBoolean; ALabel : PChar) : TInteger; 
Parameters 

Variable The declared pascal variable, which represents the explicit variable  
   in the model. 
Name  Name of explicit variable. 
DoPlot  True:  The variable is plotted. 
   False: The variable is added to the Results page when calculation is done. 

Example 
AddExplicitVar(W,'Compressor work', True); 

6.3.3 SetSampleTime 
Heading 

procedure SetSampleTime(IsFixed : Boolean; Value : TFloat); 
Parameters 

IsFixed  Run with fixed sample time? If true the sample time specified in value is used; 
else fixed sample time is not used. 

Value  The value of the fixed sample time in seconds. 
Example 

SetSampleTime(True,10); 

6.4 ModelEquations 
In the ModelEquations procedure the equations are written. ModelEquations is called every 
time the Solver needs to evaluate the model. 
 
Suppose the problem from chapter 5 is extended, so that instead of just cooling the block, it is 
required that the temperature is held at 50 °C ±  2 °C. To accomplish this, the block is put into 
an air chamber, with the possibility to add air at 70°C or air at 20°C: 

, , ,pV c Tρ

hT

cT
Controller

 
 

Figure 10. Controlling the temperature. 



40 6 Model file format 

WinDali Morten Juel Skovrup 

 
Now the system has two states: either hot air supply or cold air supply. 
 
The equations for the two states are: 

 
( )

( )

,

,

p c

p h

d TVc h A T T Cold
d t
d TVc h A T T Hot
d t

ρ

ρ

= −

= −
 (5.1) 

The SetupProblem procedure for this case will look like this: 
 
procedure SetupProblem; 
begin 
  SetupModel('Cooling of block 2',0,20000); 
  SetStates('Cold,Hot'); 
  SetParamPages('Material,Geometry,"Heat transfer"'); 
  AddDynamic(T,100,'T','Temperature [°C]'); 
  AddFloatParamExt(Rho,8000,'Density [kg/m^3]',1,0,20000,''); 
  AddFloatParamExt(Cp0,480,'Specific heat [J/kg K]',1,0.001,5000,''); 
  AddFloatParamExt(Lambda,15,'Conductivity [W/m K]',1,0.0001,5000,''); 
  AddFloatParamExt(V,0.001,'Volume [m^3]',2,0.000001,1000,''); 
  AddFloatParamExt(A,0.06,'Surface area [m^2]',2,0.000001,10000,''); 
  AddFloatParamExt(h,10,'Heat transfer coefficient [W/m^2 K]', 
    3,0.00001,100000,''); 
  AddFloatParamExt(Tc,20,'Cold temperature [°C]',3,0,0,''); 
  AddFloatParamExt(Th,70,'Hot temperature [°C]',3,0,0,''); 
  AddExplicit(Bi,'Biot number',False); 
end; 

 
and the ModelEquations procedure will look like this: 
 
procedure ModelEquations(Time : TFloat; State : TInteger; 
  var R : array of TFloat; var YDot : array of TFloat); 
begin 
  if State = 1 then 
    YDot[0] := h*A/(Rho*V*Cp)*(Tc-T) 
  else 
    YDot[0] := h*A/(Rho*V*Cp)*(Th-T); 
 
end; 

 
It is also necessary to fill out StateShift but this will be treated in chapter 6.5. 
 
To show how static equations are formulated assume that the specific heat of the material, no 
longer is constant; but can be calculated as: 
 

 0
p

p p
p

c T
c c

c
−

=  (5.2) 

Note that this equation is pure fictional. It has no physical meaning and only serves to illustrate 
static variables. cp0 is a parameter provided by the user. 



  6 Model file format 41 

WinDali Morten Juel Skovrup 

 
In SetupProblem the following line: 
 
AddFloatParamExt(Cp,480,'Specific heat [J/kg K]',1,0.001,5000,''); 
 
Is changed to: 
 
AddFloatParamExt(Cp0,480,'Specific heat [J/kg K]',1, 0.001,5000,''); 
 
And the following line is added to SetupProblem: 
 
AddCommonStaticExt(Cp,480,'Cp','Specific heat [J/kg K]','',0,0,True,''); 
 
The cp equation also has to be added to ModelEquations. This is done by adding the line: 
 
R[0] := Cp-Cp0*Sqrt((Cp-T)/Cp); 
 
See also the included "Cooling of Block 2" demo. 

6.5 StateShift 
StateShift is used to specify when the logical state is changed. The heading of the StateShift 
function looks like this: 
 
procedure StateShift(Time : TFloat; State : TInteger;  
  var G : array of TFloat); 
 
The G-array is zero-indexed, and has the same length as the number of states. A shift to another 
state is done when the corresponding item in the G array becomes negative. The State 
parameter holds the number of the current state. 
 
In the example from chapter 6.4 there was two states: 
 1: Cold corresponds to G[0] 
 2: Hot corresponds to G[1] 
 
The temperature should be held at 50 °C ±  2 °C. That is when the system is in state 1 it should 
shift to state 2 when the temperature drops below 48 °C. And when the system is in state 2 it 
should shift to state 1 when the temperature is above 52 °C: 
 
procedure StateShift(Time : TFloat; State : TInteger; 
  var G : array of TFloat); 
begin 
  case State of 
    1 : G[1] := T-48; 
    2 : G[0] := 52-T; 
  end; 
end; 
 
What the code states is that when the current state is 1 (Cold) then G[1] becomes negative when 
T is less than 48 °C and the Solver will then shift to state 2. When the current state is 2 (Hot) 
then G[0] will become negative when T is larger than 52 °C, and the Solver will then shift to 
state 1. 



42 6 Model file format 

WinDali Morten Juel Skovrup 

The procedure ShiftToState can be used to perform the same as the code above, but it makes it 
a bit more readable: 
 
procedure StateShift(Time : TFloat; State : TInteger; 
  var G : array of TFloat); 
begin 
  case State of 
    1 : SwitchToState(2,T-48,G); 
    2 : SwitchToState(1,52-T,G); 
  end; 
end; 
 
Read the call SwitchToState(2,T-48,G) as "Switch to state 2 when T-48 becomes negative".  
 
Remember to supply G as the last parameter in the call to SwitchToState. 
 
SwitchToState has the following implementation: 
 
procedure SwitchToState(StateNum : TInteger; SignChange : TFloat; 
  var G : array of TFloat); 
begin 
  G[StateNum-1] := SignChange; 
end; 

6.6 OnStateChange 
OnStateChange is seldom modified. It can be used to supply guesses (different from the default) 
on the static variables or to change the “initial” value of a dynamic variable before continuing in 
to a new state. An example showing this is included in the Bouncing Ball demo 
 
The solver supplied with WinDali automatically updates guesses on static variables. That is it 
uses the supplied guesses the first time it enters a state. If it enters the same state a second time, 
the solution from the first time is used as guesses. 

6.7 OnSolution 
Called every time a solution has been found. Can be used to do intermediate calculations. 

6.8 OnSample 
The procedure OnSample is called if you choose to run the simulation with a fixed sample time. 
 
If for example the sample time is 10 seconds it forces the equation solver to produce a solution at 
every 10 seconds, but it might also produce solutions in between each sample. 
 
When a solution is found at a sample time, then first OnSolution is called then OnSample and 
finally OnSolution again. The reason for this is that you want to plot both the solution just 
before OnSample is called, and if some values are changed in OnSample, then the changes should 
also be plotted with the same timestamp. 
 
If you for example implement a controller, which operates with a fixed sample time of 10 
seconds – let us say it controls the speed of a compressor – then at time 100 a solution is found 



  6 Model file format 43 

WinDali Morten Juel Skovrup 

which is plotted. This solution is then used in the controller when OnSample is called to change 
the speed, and finally OnSolution is called to reflect the change in the speed. 
 
You should note that OnSample will not be called at the initial time. If your simulation runs from 
0 secods and you specify a sample time of 10 secondes then OnSample will be called the first 
time at Time = 10 seconds. This is because the results of the calculations in OnSample might be 
used in ModelEquations and the static and dynamic variables might be used in OnSample. At 
the initial time the static variables only have guess-values, so to solve the equations in 
ModelEquations the results from OnSample has to be known. In other words: you have to 
specify initial values for the values calculated in OnSample, which are used in ModelEquations. 
 
Typically a controller will also control which state the system is in (for example if the 
compressor is On or Off). Therefore you can force the state to change by changing the supplied 
State parameter in OnSample: 
 
procedure OnSample(Time : TFloat; var State : TInteger); 
 
Note that State is a var parameter, which means that you can change State within OnSample. 
 
The calling sequence for the procedures in figure 8 was: 
 

1) Load
Model

2) SetUpProblem 3) Start 4) PreCalc

5) Stop 10) EndCalc

6) ModelEquations

7) StateShift

9) OnSolution8) OnSolution

Yes

No

NoYes

State Change
Procedure

Sample Check
Procedure

Sample Check
Procedure

 
 

Figure 8. Calling sequence for the procedures in the model file. 
 
 
And the State Change Procedure called the following procedures: 
 



44 6 Model file format 

WinDali Morten Juel Skovrup 

OnStateChange ModelEquations OnSolution

State Change Procedure

 
 

Figure 8a. State Change Procedure. 
 
The Sample Check Procedure calls the following procedures in the Model file: 
 

Sample time?

OnSample

OnSolution

YesNo

Forced state
change?

State change
procedure

YesNo

 
Figure 8c. Sample Check Procedure. 

 
Note that the State Change Procedure is called within the Sample Check Procedure if the state is 
forced to change in th OnSample procedure. 

6.9 EndCalc 
Called once when the simulation stops. Can be used to free memory allocated in PreCalc, and to 
do some final calculations on explicit variables. 

6.10 OnQuit 
Is called when the user exits the Simulation Program or changes the model. Can be used to do 
some final clean up. 



  6 Model file format 45 

WinDali Morten Juel Skovrup 

6.11 OnUIValueChange 
OnUIValueChange (On User Interface Value Change) is called whenever the user changes a 
value in the Simulation Interface program (including when the user presses an Action button). 
 
The heading looks like this: 
 
procedure OnUIValueChange(UIType : TInteger; Num,State,Choice : TInteger;  
  Value : TFloat); 
 
UIType can have one of the following values: 
0 ptNone:  No value changed (you will never get this value) 
1 ptDynamic:  An initial value for a dynamic variable has changed 
2 ptStatic:  A guess value on static variable was changed 
3 ptInitial:  An initial parameter was changed 
4 ptExplicit:  An explicit variable has changed 
5 ptInput:  An input variable has changed 
6 ptFloat:  A floating point parameter was changed 
7 ptInteger:  An Integer parameter was changed 
8 ptBoolean:  A boolean parameter was changed 
9 ptList:  A list parameter was changed 
0 ptEnum:  An enum parameter was changed 
11 ptEnumChoice: An enum choice parameter was changed 
12 ptChoice:  A choice in a Enum Choice parameter was changed 
13 ptActionBtn: An action button was pressed 
14 ptInfoLabel: An info label was changed 
15 ptDynDynamic: An initial value for a dynamic variable created calling AddDynVar 
    has changed 
16 ptDynStatic: A guess value on static variable created calling AddStatVar has  
    changed 
17 ptDynExplicit: An explicit variable created calling AddExplicitVar has changed 
18 ptDynInput:  An input variable created calling AddInputVar has changed 
 
The values ptNone, ptInput and ptDynInput are reserved for future use, and you will never see 
these values. 
 
Num Is the number of the variable/parameter/button/info label that was changed. 
State  

if UIType is 2 then State is the state, the static variable with number Num 
belongs to 

if UIType is 12 then State is the ItemIndex of the enumerated choice parameter 
with number Num 

if UIType is none of the above then State is ignored. 
 
Choice 

if UIType is 12 then Choice is the ParamIndex of the ItemIndex (= state) of 
the enumerated choice parameter with number Num 

else Choice is ignored. 



46 6 Model file format 

WinDali Morten Juel Skovrup 

Value is the numerical value of the value in the user interface that was changed. 
 
You can call two procedures as respond to a change in a value: 
 
procedure SetUIValue(UIType : TInteger;Num,State,Choice : TInteger;  
  Value : TFloat; StrValue : PChar); 
 
which sets a value in the user interface, and 
 
function GetUIValue(UIType : TInteger;  Num,State,Choice : TInteger;  
  StrValue : PChar) : TFloat; 
 
which gets a value from the user interface. 
Three notes should be made: 

• the Pascal variables you have declared does not reflect the values in the user-interface 
when OnUIValueChange is called (the variables are only updated just before PreCalc is 
called) 

• The only type you can use for getting and setting user interface values is TFloat. This is 
also true if you want to get/set a Boolean parameter. If it's a Boolean parameter then if 
the value: 

= 0 it's False 
= 1 it's True 

• The StrValue parameter is used if the item in question is an Action button or an Info 
label. 

 
The parameters in SetUIValue and GetUIValue have the same meaning as for 
OnUIValueChange. 
 
Example: 
 
Suppose you have defined an action button, a boolean parameter and an enumerated choice 
parameter in SetupProblem: 
 
implementation 
var 
  UACond              : TInteger; 
  UA_c,QDim_c,DTDim_c : TFloat; 
  TestBool            : TBoolean; 
procedure SetupProblem; 
begin 
  AddEnumChoiceParam(UACond,1,'"UA-value","Q_Dim, DT_dim"', 
                     'Specify UA value by specifying',1); 
  AddChoice(1,UA_c,1000,'UA value [W/K]'); 
  AddChoice(2,QDim_c,8000,'Q_dim [W]'); 
  AddChoice(2,DTDim_c,8,'DT_dim [K]'); 
  AddActionBtn('Update DTDim_c',1); 
  AddBoolParam(TestBool,True,'TestBool',1); 
end; 
 
In OnUIValueChange you want the following to happen: 
 



  6 Model file format 47 

WinDali Morten Juel Skovrup 

When the user press the button and "Q_Dim, DT_dim" is selected in the enumerated choice 
parameter and QDim_c is larger than 6000 then DTDim_c is set to 6, and the boolean parameter is 
set to false. 
 
procedure OnUIValueChange(UIType : TUserinterfaceType; 
                          Num,State,Choice : TInteger; 
                          Value : TFloat); stdcall; 
begin 
//Only perform if button number 1 is pressed 
  if (TParameterType(UIType) = ptActionBtn) and (Num = 1) then 
  begin 
    {Only perform if item number 2 (i.e. "Q_Dim, DT_dim") is selected in 
     enumerated choice parameter 1. Rounding is done to avoid problems 
     comparing a floating point number with an integer} 
    if Round(GetUIValue(Ord(ptEnumChoice),1,0,0,nil)) = 2 then 
      begin 
        {Only perform if choice number 1 in item 2 in enumerated 
         parameter 1 is larger than 6000} 
        if GetUIValue(Ord(ptChoice),1,2,1,nil) > 6000 then 
          begin 
            SetUIValue(Ord(ptChoice),1,2,2,6,'');  //DTDim_c is set equal 6 
            SetUIValue(Ord(ptBoolean),1,0,0,0,''); //TestBool is set false 
          end; 
      end; 
  end; 
end; 
 
See also the Action btn demo. 

6.11.1 Running simulations from the model 
You can call three procedures from the model to run simulations without user-interaction. This 
could for example be useful if you want to investigate the frequency response of a model. In this 
case you could display a button to the user, and when it is pressed several simulations are run 
and finally some resulting plots are drawn (for example Bode-plots, Polar plots etc.). 
 
The three procedures that can be called are: 
 
Heading 

procedure RunSimulation(TStart,TEnd,hMax : TFloat); 
Parameters 

TStart Start time for the simulation. 
TEnd End time for the simulation 
HMax Reserved for future use 

Example 
RunSimulation(0,3600,0); 

 
RunSimulation starts a simulation and control is returned back to the model when the 
simulation is done. 
 



48 6 Model file format 

WinDali Morten Juel Skovrup 

Heading 
procedure CreatePlot(var PlotNum : TInteger; XAxisType : TInteger;  
  XLabel : PChar; YAxisType : TInteger; YLabel : PChar); 
Parameters 

PlotNum  Number of the plot created (this value is used in calls to AddCurveToPlot – see  
   below) 
XAxisType Type of the X-axis. If 0 then linear axis. If 1 then logarithmic. 
XLabel  Label on X-axis. 
YAxisType Type of the Y-axis. If 0 then linear axis. If 1 then logarithmic. 
YLabel  Label on Y-axis 

Example 
var  
  PlotNum : TInteger; 
 
CreatePlot(PlotNum,0,'X-Axis',0,'Y-Axis'); 

 
Heading 
procedure AddCurveToPlot(PlotNum : TInteger; CurveName : PChar;  
                         XData,YData : array of TFloat); 
Parameters 

PlotNum  Number returned from call to CreatePlot 
CurveName Name of the curve. 
XData  Array with x-coordinates of the curve. 
YData  Array with y-coordinates of the curve. 

Shortcut 
Write curve and press <Ctrl>+J. 

Example 
var  
  X,Y : array[1..20] of TFloat; 
 
AddCurveToPlot(PlotNum,'TestCurve',X,Y); 
 

An example showing how to use the procedures is included in the demos. 

6.12 OnSaveSettings 
This procedure is called every time the user selects the File|Save menu in the simulation 
program. The name of the file the settings are saved to is passed in the parameter FileName. 
 
If you want to save additional information together with the settings the Simulation program 
saves, you can do it in this procedure. You should not write directly to file with the name passed 
as FileName – instead you could save your custom setting in a file with the same name but with 
a different extension. 

6.13 OnLoadSettings 
OnLoadSetting is called every time the user selects the File|Open menu in the Simulation 
program. The name of the file the user opens is passed in the parameter FileName. 



  6 Model file format 49 

WinDali Morten Juel Skovrup 

6.14 Using Initial parameters 
Initial parameters are used to change the default behavior of the installed dynamic variables. 
Normally, installing a dynamic variable will create an Edit box on the Initial page in the 
Simulation program, where the user can enter an initial value. But there might be situations 
where you want to avoid this.  
 
Imagine for example you have a model where the dynamic variable is internal energy. Installing 
the dynamic variable would then require the user to enter an initial value for the internal energy, 
which can be difficult to acquire knowledge about. Instead it might be preferred to let the user 
enter for example temperature and pressure as initial values, and then calculate the initial value 
for internal energy before the simulation starts (requires that you know that the internal energy 
can be expressed as a function of Temperature and Pressure – this is not the case if you have 
two-phase flow).  
 
To make this work you have to: 

1. Use Initial parameters for the temperature and pressure. This is done by calling 
AddInitialParam as described below. 

2. Avoid the default Edit box for the internal energy to show in the user interface. This is 
done by setting the Show parameter in AddDynamicExt to False for the internal energy 
dynamic variable. Note that you still have to call AddDynamicExt for the internal energy 
variable (see 6.2.5). Note also that setting Show to False prevents the internal energy 
from appearing in plots and from saving it. If you still want to plot and/or save the 
internal energy, you have to add an explicit variable, which you just set equal to the 
internal energy. 

3. Calculate and set the initial value for the internal energy before the simulation starts. 
This can be done in PreCalc (see 6.2.17) by calling SetInitial (see 6.14.1) as 
described below. 

 
AddInitialParam adds information about an initial parameter. 
 
Heading 

function AddInitialParam(var Parameter : TFloat; DefaultValue : TFloat;  
  Name : PChar) : TInteger; 
function AddInitialParamExt(var Parameter : TFloat; DefaultValue : TFloat;  
  Name : PChar; Min,Max : TFloat; ALabel : PChar) : TInteger; 

Parameters 
Parameter  The declared pascal variable, which represents the parameter in the  
    model. 
DefaultValue The default value of the parameter. 
Name   Text that appears on the Initial page in the Model & Solver settings  
    window. 
Min   Minimum value the user can set the parameter to. 
Max   Maximum value the user can set the parameter to. 
    If Min = Max = 0 then no limits are set. 
ALabel   See 5.1. 

Return value 
The number assigned to the parameter. Can be used to identify the parameter in calls to 
SetUIValue. 



50 6 Model file format 

WinDali Morten Juel Skovrup 

Example 
implementation 
var 
  U,P,T  : TFloat; {Internal Energy, Pressure and Temperature} 
  UIndex : TInteger; 
procedure SetupProblem; 
begin 
  : 
  UIndex := AddDynamicExt(U,0,'U','Internal Energy',0,0,False,''); 
  AddInitialParamExt(P,1E5,'Pressure [Pa]',0,0,''); 
  AddInitialParamExt(T,20,'Temperature [°C]',0,0,''); 
  : 
end; 
procedure PreCalc; 
var 
  IntEnergy : TFloat; 
begin 
  : 
  IntEnergy := CalculateInternalEnergy(T,P); 
  SetInitial(UIndex,IntEnergy); 
  : 
end; 

 
Another example where you could use Initial parameters is when you want the user to be able to 
change the number of dynamic and/or static equations. This situation arises if you have made a 
model of for example a pipe, which is divided in to several sections, and you want the user to 
decide on the number of sections to be used. In this case you don’t have any dynamic variables 
to install in SetupProblem (if the pipe is all you want to model), as the number of dynamic 
variables depends on the number of sections the user want to divide the pipe in. 
Instead you add an initial parameter, which allows the user to set the number of divisions, and 
you may also add an initial parameter to allow the user to set the initial value for the dynamic 
variables. 
 
When the user changes the number of pipe divisions, the number of static variables might also 
change (depending on the model). The number of dynamic and static variables that the resulting 
model has when the user starts the simulation is specified in PreCalc by calling AddDynVar and 
AddStatVar (see 6.14.3 and 6.14.4).  
 



  6 Model file format 51 

WinDali Morten Juel Skovrup 

A model of a pipe with selectable number of divisions could be defined as this: 
implementation 
const 
  MaxDiv   = 20; 
var 
  T : array [1..MaxDiv] of TFloat; {Temperature is dynamic variable} 
  N : TFloat;                      {Number of divisions} 
  NDiv : TInteger;                  {An initial parameter is always 
                                    floating point - regardless of the  
                                    DataType. NDiv is the TInteger version  
                                    of N} 

procedure SetupProblem; 
begin 
  : 
  {Note that input is limited between 1 and MaxDiv: } 
  AddInitialParamExt(N,10,'Number of divisions',1,MaxDiv,''); 
  : 
end; 
procedure PreCalc; 
var 
  i,     : TInteger; 
  AName  : string; 
begin 
  : 
  NDiv := Round(N); 
  for i:=1 to Ndiv do 
    begin 
      AName := 'T_'+IntToStr(i) 
      {Note the typecast from string to PChar} 
      AddDynVar(T[i],1,PChar(AName),PChar(AName)); 
    end; 
  : 
end; 

6.14.1 SetInitial 
SetInitial is used to change the initial value of a dynamic variable just before the simulation 
begins (i.e. after the user starts the simulation, but before ModelEquations is called the first 
time). SetInitial is normally called in PreCalc. 
 
Heading 

procedure SetInitial(Index : TInteger; Value : TFloat); 
Parameters 

Index Number of the dynamic variable to set the initial value of. 
Value The new initial value. 

Example 
SetInitial(1,10.25); 



52 6 Model file format 

WinDali Morten Juel Skovrup 

6.14.2 SetGuess 
SetGuess is used to change the guess value of a static variable just before the simulation begins 
(i.e. after the user starts the simulation, but before ModelEquations is called the first time). 
SetGuess is normally called in PreCalc. 
 
Heading 

procedure SetGuess(State,Index : TInteger; Value : TFloat); 
Parameters 

State The state the static variable belongs to 
Index Number of the static variable to set the guess value of. 
Value The new guess value. 

Example 
SetGuess(1,1,10.25); 

6.14.3 AddDynVar 
AddDynVar is used to add dynamic variables just before the simulation begins (i.e. after the user 
starts the simulation, but before ModelEquations is called the first time). AddDynVar is normally 
called in PreCalc. 
 
Heading 

function AddDynVar(var Variable : TFloat;  
  InitalValue : TFloat; Name,LongName : PChar) : TInteger; 
function AddDynVarExt(var Variable : TFloat; InitalValue : TFloat;  
  Name,LongName : PChar; Min,Max : TFloat; Show : TBoolean;  
  ALabel : PChar) : TInteger; 

Parameters 
Variable The declared pascal variable, which represents the variable in the model. 
InitalValue Default initial value of the dynamic variable. 
Name  Short name that appears on plots. 
LongName Long name, appears Initial page in the Simulation Interface program. 
Min  Minimum value the user can set the variable to. 
Max  Maximum value the user can set the variable to. 
   If Min = Max = 0 then no limits are set. 
Show  True: Display the dynamic variable in interface. 

    Plot/save of this variable is available to the user. 
   False: Do not display the dynamic variable in interface. 
    Plot/save of this variable is not available to the user. 
   See also chapter 6.14. 
Return value 

The number assigned to the dynamic variable. Can be used to identify the variable in calls to 
SetInitial. 



  6 Model file format 53 

WinDali Morten Juel Skovrup 

Example 
implementation 
var 
  T : array [1..10] of TFloat; 
  P : TFloat; 
 
procedure PreCalc; 
begin 
  P    := 1; 
  T[1] := 10; 
  T[2] := 10; 
  … 
  AddDynVar(T[1],10,'T1','Temperature 1'); 
  AddDynVar(T[2],10,'T2','Temperature 2'); 
  … 
  AddDynVar(P,1,'P','Pressure'); 
end; 

6.14.4 AddStatVar 
AddStatVar is used to add static variables just before the simulation begins (i.e. after the user 
starts the simulation, but before ModelEquations is called the first time). AddStatVar is 
normally called in PreCalc. 
 
Heading 

function AddStatVar(State : TInteger; var Variable : TFloat;   
  InitalGuess : TFloat; Name,LongName : PChar) : TInteger; 
function AddStatVarExt(State : TInteger; var Variable : TFloat;   
  InitalGuess : TFloat; Name,LongName : PChar; Min,Max : TFloat; 
  DoPlot : TBoolean; ALabel : PChar) : TInteger; 

Parameters 
State   The state the static variable belongs to. 
Variable  The declared pascal variable, which represents the variable in the model. 
InitialGuess The default guess on the static variable. 
Name   Short name that appears on plots. 
LongName  Long name, appears on the Guesses page in the Solver & Model settings  
    window in the Simulation program. 
Min   Minimum value the user can set the variable to (and limit for the static  
    equation solver). 
Max   Maximum value the user can set the variable to (and limit for the static  
    equation solver). 
    If Min = Max = 0 then no limits are set. 
DoPlot   True: Plot/save is available to the user for this variable 
    False: Plot/save is not available to the user for this variable. 

Return value 
The number assigned to the static variable. Can be used to identify the variable in calls to 
SetGuess. 



54 6 Model file format 

WinDali Morten Juel Skovrup 

Example 
implementation 
var 
  T : array [1..10] of TFloat; 
 
procedure PreCalc; 
begin 
  … 
  AddStatVar(1,T[1],10,'T1','Static Var 1'); 
  AddStatVar(1,T[2],10,'T2','Static Var 2'); 
  … 
end; 

6.15 Mathematical text 
WinDali includes possibilities to make text appear in the Simulation Interface program with 
Greek letters and super- and subscript. 
 
To use this facility, you have to specify the Name/LongName parameter in calls to Add… functions 
using the following special characters: 

• ; Start/end special character section. 
• _ Move text down. Creates subscript or moves text back to normal after a 

superscript. 
• ^ Move text up . Creates superscript or moves text back to normal after a subscript. 
• A string specifying a Greek letter (see below). 

Writing the string in lowercase creates the corresponding Greek letter in lowercase. 
Writing the string in uppercase creates the corresponding Greek letter in uppercase. 

 
Examples: 
'c;_;p;^; [kJ/kg-K]' will display as:  
 
'alpha;_;i;^; [W/m;^;2;_;K]' will display as:  
 
The following table shows the strings to include Greek letters: 



  6 Model file format 55 

WinDali Morten Juel Skovrup 

 
String Greek lowercase Greek uppercase 
'alpha' α Α 
'beta' β Β 
'gamma' γ Γ 
'delta' δ ∆ 
'epsilon' ε Ε 
'zeta' ζ Ζ 
'eta' η Η 
'theta' θ Θ 
'iota' ι Ι 
'kappa' κ Κ 
'lambda' λ Λ 
'mu' µ Μ 
'nu' ν Ν 
'xi' ξ Ξ 
'omicron' ο Ο 
'pi' π Π 
'rho' ρ Ρ 
'sigma' σ Σ 
'tau' τ Τ 
'upsilon' υ Υ 
'phi' φ Φ 
'chi' χ Χ 
'psi' ψ Ψ 
'omega' ω Ω 

 

6.16 Debugging 
For debugging purposes you can call the procedure DebugMsg: 
 
Heading 

procedure DebugMsg(Msg : PChar; Num : TFloat) 
Parameters 

Msg  Message to display 
Num  An optional number to display (if Num is larger than 1E299 then the number is  
   not displayed). 

Shortcut 
Write dbg and press <Ctrl>+J. 

Example 
DebugMsg('Pressure',P);  {will display for ex. 'Pressure = 1.2'} 
DebugMsg('In ModelEq',1E300); {will display 'In ModelEq'} 
 

The messages you write with DebugMsg will appear on the Debug page in the Message Window 
in the Simulation Interface Program. 
 



56 7 Common problems 

WinDali Morten Juel Skovrup 

7 Common problems 
When compiling a model in WinDali the following problems can occur: 
 
Problem Solution 
Problems compiling a model and 
thereafter running it 

When you open a model be sure to use File|Open Model. 
Models are always saved as projects (not in single files). 

Problem compiling a model (can’t 
create model file) 

Remember to close the Simulation program before 
compiling the model currently loaded in the Simulation 
program. If you always run the Simulation program from 
the Model Editor this problem should not occur… 

 
 



  8 Using refrigerant equations 57 

WinDali Morten Juel Skovrup 

8 Using refrigerant equations 
With WinDali comes a package with equations for the thermodynamic and thermophysical 
properties of 45 refrigerants. These equations can be directly used in your models. 
 
To include one of the refrigerants do the following: 

1. Include CRefrigWrapper in your uses clause 
2. Create a TRefrigerantWrapper object 
3. Use the equations 
4. Free the object. 

 
All these things will automatically be included if you select File|New|New Refrigeration Model 
when you create your model. 
 
You can inspect CRefrigWrapper.pp in the \lib directory to see which functions you can call 
with a TRefrigerantWrapper object, browse the documentation installed with WinDali, or just 
use the Procedures tab in the Model Manager in Model Editor. 



58 8 Using refrigerant equations 

WinDali Morten Juel Skovrup 

 



  9 WinDali Model Editor 59 

WinDali Morten Juel Skovrup 

9 WinDali Model Editor 
WinDali Model Editor is a text editor with capabilities to interact with Free Pascal Compiler. 
Free Pascal Compiler (FPC) is a freeware 32-bit compiler, compatible with Borland Turbo 
Pascal™, and partially compatible with Borland Delphi™. 
 
FPC is available from the following web-address: http://www.freepascal.org/  
 
FPC is an ongoing project, so you should check for updates at the address above. 
 
Documentation and licensing information about FPC can be found at the above web-address. 
 
When you start Model Editor and select File|New|New Model you get the following screen: 
 

 
 

Figure 11. WinDali Model Editor. 
 

• Model Manager is an overview of the files in your current model. When you compile 
your model, only the files listed in the Model Manager and the libraries (units) used by 
these files will be compiled (i.e. other files you may have opened in the Model Editor 
will NOT be compiled). When you double-click on a file in Model Manager, the file will 
open in the Model Editor. 

• Model Editor is where you edit the files in your model. The Model Editor can be 
customized in numerous ways by selecting the Tools|Environment Options menu. 

Model Manager 

Model Editor 

Message Window 



60 9 WinDali Model Editor 

WinDali Morten Juel Skovrup 

• Message Window will display messages from the compiler. If an error occurs you can 
double-click on the description of the error in the Message Window, and you will be lead 
to the place in the code that caused the problem. 

 
Most menu items in the Model Editor should be self-explaining, but a few require some 
comments. 
 
 
Menu Item Explanation 
File Save File as 

Template 
The current file is saved as a template 

Edit Copy mode Lets you select if the text copied in the editor should be in RTF 
(Rich Text Format), HTML or normal text. If a text is copied in 
RTF or HTML format to a word processing program, then the font 
and syntax highlighting is preserved. 

Search Insert/Goto 
Bookmark 

You can define up to 10 bookmarks in your code. These 
bookmarks are not saved with the file. 

Model Save Model as 
Template 

Allow you to save the current Model as a template. The template 
will be selectable from the File|New|New From Template menu. 

 View Source Opens the Model source as read only. This is only for inspection. 
 Options Displays the Compiler Options dialog – see later. 
 Compile, Build, 

Build all 
"Compile" recompiles files that have been changed since last 
compile. "Build" recompiles all files even though they haven’t 
changed since last compilation. Compile and Build are direct calls 
to FPC; but as Build does not always produce the expected result, 
Build All has been added to the compile options. Build All 
ensures that all binary files are deleted before the compiler starts 
compiling. This forces the compiler to recompile all files the 
model depends on. 

Tools Environment 
Options 

See later 

 Find Compiler If the program for some reason could not find the Free Pascal 
Compiler when it started, you can manually start a new search by 
selecting this menu. 

 Macro Press <Ctrl>+<Shift>+R to start recording a macro. When you 
have finished recording press <Ctrl>+<Shift>+R again. To play 
the macro press <Ctrl>+<Shift>+P. You can only have one macro 
at a time, and it can not be saved. 
 

 Configure Tools Allow you to add items to the Tools menu; where an item starts 
another program. When you add a tool you can use the following 
macros: 
  %EXEPATH        Path to Model Editor (default c:\WinDali) 
  %EDITNAME     Name of the current file in the Code  
                               Editor 
  %EXENAME      Name of the model file – i.e.  
                               the name of the resulting file when the  
                               model is compiled  



  9 WinDali Model Editor 61 

WinDali Morten Juel Skovrup 

9.1 Compiler Options 
Compiler options apply only to the model you are currently working with. Options can be saved 
and loaded and you can change the default options. 
 
When you select the Model|Options menu you will see the following dialog: 
 

 
 

Figure 12. Compiler options. 
 
The dialog contains a number of possible settings that mostly has to do with FPC. The most 
important settings will be explained shortly below. For more information see the FPC 
documentation. 
 
Application 
 
Application name Name of the resulting file, when the model is compiled. 
Application extension Extension of the resulting file, when the model is compiled. 
Target  
Win32 Build Win32 application (or DLL) 
DOS Build DOS application 
 
NOTE: to use both targets, you need the Win32 and the DOS version of FPC. WinDali only 
comes with the Win32 version. 
 



62 9 WinDali Model Editor 

WinDali Morten Juel Skovrup 

Compiler 
 
Code generation  
Optimize for speed Optimize code for speed (default) 
Optimize for size Optimize code for size of compiled file 
Level 1 optimizations 
(quick optimizations) 

Only simple optimizations, but fast compilation. 

Level 2 optimizations 
(Level 1 + some slower 
optimizations) 

More time consuming and extensive optimizations (default) 

Level 3 optimizations 
(Level 2 + uncertain 
optimizations) 

Should be used with caution. The optimizations could cause 
erroneous behaviour of your code (read the FPC documentation). 

Runtime Errors  
Range checking Checks that array and string indexes are within bounds (default on). 
I/O checking Checks for I/O errors after every I/O call (file operations) (default 

on). 
Overflow checking Checks for numerical overflow in TInteger operations (default on). 
Debugging  
Generate browse info Generates information that can be used by a code browser/debugger. 
Include local Includes local symbols in the browser information. 
Syntax Options  
Delphi compatible Compatible with Delphi (default on). 
TP 7.0 compatible Compatible with Turbo Pascal. 
Delphi 2 extensions Some extensions specific for Delphi version 2 are supported. 
Support C-style 
operators (*=, +=, /= and 
-=) 

Support expressions like x += 1 (which in standard Pascal has to be 
written as x := x+1 

Gpc (Gnu Pascal 
Compiler) compatible 

Compatible with GNU Pascal Compiler 

Support label and goto 
commands 

Allow use of label and goto as in standard Pascal (default on). 

Messages  
Show hints Show the hints the compiler might return (default on). 
Show warnings  Show the warnings the compiler might return (default on). 
Show notes  Show the notes the compiler might return (default on). 
Show general 
information  

Show some general information about the compilation (default on). 

 



  9 WinDali Model Editor 63 

WinDali Morten Juel Skovrup 

Linker 
 
Debugging  
Generate dbg info for use with GDB Generate information that can be used with GNU 

debugger 
Generate dbg info for use with DBX Generate information that can be used with DBX 
Use the heaptrc unit Use the heap-trace unit 
Exe and DLL options  
Generate Console application Create console application (like old time dos 

applications – but 32 bit)  
Include .reloc section Includes .reloc section in the executable. Default on 

for DLL’s. 
Misc  
Strip symbols from executable Strips all symbols from an executable. Default off for 

a DLL. 
Generate profiler code for gprof Generate code that can be used with GNU profiler. 
Omit linking Skip the linking stage. This can then be done 

manually after compilation. 
Linker output  
Do not delete generated assembler files Prevents deletion of assembler files created by the 

compiler. You can select between several types of 
assembler. 

Memory  
Size of reserved heap space Size of heap space the programs reserve at startup 

(default 8000000 bytes) 
Stack size Maximum size of the stack (default 1048576). 
Image base Preferred load address of the compiled image (default 

$10000000) 
 
Additional 
 
Additional options – read FPC documentation. 
 
Directories/Conditionals 
 
Output directory Directory where executable/DLL should be placed. 
Unit output directory Directory where compiled units should be placed. 
Unit directory Directory where compiler should look for unit source files. 
Library directory Directory where compiler should look for compiled unit files. 
Include directory Directory where compiler should look for files included with {$I 

filename} compiler directive. 
Object directory Directory where compiler should look for object files included with 

{$L filename} compiler directive. 
Conditional defines Compiler conditional defines that should be enabled for all files in the 

model. 
Conditional undefines Compiler conditional defines that should be disabled for all files in the 

model. 



64 9 WinDali Model Editor 

WinDali Morten Juel Skovrup 

9.2 Environment Options 
When you select the Tools|Environment Options menu you will see the following dialog: 
 

 
 

Figure 13. Environment options. 
 
Preferences 
 
Default model directory Where you want Model Editor to look for your models as default 
Number of files in recently 
used file list 

Number of files the Model Editor keeps in the recently used file 
list. 

Backup levels Number of backup files to keep. One backup level creates backup 
files names filename.~ext. two backup levels keeps two backup 
files named filename.~ext and filename.~ext_1, etc. 

Only allow one instance of 
Model Editor 

If on then double-clikking on a .pp file in a filemanager will open 
files in the Model Editor already open and not open a new 
instance of the Model Editor program. 

 



  9 WinDali Model Editor 65 

WinDali Morten Juel Skovrup 

Editor 
 
Editor Speedsetting Can be Default, which selects standard windows shortcuts for common 

menu items, or IDE classic, which selects shortcuts as known from Turbo 
Pascal™. 

Undo limit Number of undo actions to remember. 
Block indent Number of spaces to move when moving blocks 
Extensions in 
Open/Save dialog 

Which file types you want to include in the Open and Save dialog box 
(installed highlighter extensions are added automatically). 

 
Display 
 
Visible right margin Show a gray line to indicate the right margin 
Right margin Number of characters before right margin line is drawn 
Visible gutter Show visible gray area to the left. This area is used to display line 

numbers and bookmarks. 
Gutter width Width of the gutter in pixels. 
Show line numbers Shows line numbers in the gutter. 
Editor font and size The font to use in the editor. 
Editor Window  
Tab style Style of tabs, which are used to select the files in the editor. 
Multiline tabs Allow the tabs to stretch over several lines. 
Hottrack tabs Highlights the caption on a tab when the mouse is moved over it. 
Ragged right Specifies whether rows of tabs stretch to fill the width of the control. 
Toolbar images  
Type Can be 

    Default: Default windows icons 
    Blue: More colorful icons 

 
Code Templates 
 
Code templates are pieces of code you can insert into your code by writing only part of the code 
and then press <Ctrl>+J. Try writing “be” (without quotes) in the editor and press <Ctrl>+J – 
you will see it expands into: 
 begin 
    
 end; 
 
You can add your own pieces of code by pressing Add and fill in a Shortcut (i.e. the shortcut you 
write in the editor, for example be in the example above) and a description (that will help you 
remember what the shortcut does). The actual code you want the shortcut to generate should be 
written into the editor on the Code Templates page. You specify where you want the cursor to be 
after you have applied the template by writing a “|” into the editor. Inspect the templates that 
already in the program to see how it is done. 
 
If you use Borland Delphi™ you can use the templates from Delphi by copying the file 
Delphi32.dci (located in \Borland\Delphi\bin directory) to CodeTmpl.dci. 
 



66 9 WinDali Model Editor 

WinDali Morten Juel Skovrup 

Highlight 
Here you install which syntax highlighters you want Model Editor to use – and which extensions 
you want to associate with each highlighter. To add a highlighter you check it in the list box, and 
perhaps change the Filter name and extensions for that highlighter. 
 
The Filter name is the text you see in the Open dialog box and the extensions is a list of 
extensions separated with semicolons, which you want to the highlighter to work on. 
 
You can make your own (primitive) highlighter by using the General highlighter. For the 
General highlighter you can specify keywords, comment style and string delimiters. 
 
Color 
 
Enables you to specify the color and font style of different code elements for each highlighter. 
 
Library 
 
Here you specify directories that apply for all models: 
 
Unit directory Default directory where compiler should look for unit source files. 
Library directory Default directory where compiler should look for compiled unit files. 
Include directory Default directory where compiler should look for files included with 

{$I filename} compiler directive. 
Object directory Default directory where compiler should look for object files included 

with {$L filename} compiler directive. 
 
Associations 
 
In this page you can specify the file extensions that Model Editor should be associated to. Note 
that if you uninstall WinDali, these associations will still exist in the registry. Before you 
uninstall WinDali you should deselect any associations you have created. This will delete the 
corresponding keys in the registry. 
 
 
 



  10 WinDali Simulation Interface 67 

WinDali Morten Juel Skovrup 

10 WinDali Simulation Interface 
When you start the simulation program you will see the following screen (not all windows will 
be expanded): 
 

 
 
 

Figure 14. Simulation Program. 
 
The items in the program are: 

• Plot Window 1 and 2, where results are plotted. You can add as many plots as you want. 
Normally only Plot Window 1 is open, but you can display number 2 by pressing  

• Curve Window, where the variables you can plot will be displayed. If both plot 1 and 2 
are visible, then the first column checkboxes select curves in plot 1 and the second 
column selects curves in plot 2. 

• Message Window, which has two pages:  
o Solver, where messages from the solver are displayed. 
o Debug, where debug messages from the model are displayed. 

• Data window where you can inspect the numerical values of the selected variables. You 
bring up the data window by pressing  

• Online parameters where you can change parameters during the simulation (see chapter 
10.2). 



68 10 WinDali Simulation Interface 

WinDali Morten Juel Skovrup 

The look of the Simulation Interface program will change according to the model that is loaded. 
As default the following pages will be created: 
 
General 
TStart Start time for simulation 
Tend End time for simulation 
Initial state The state the simulation should start in 
Save data to ASCII 
or binary file 

Saves data to an ASCII or a binary file. When you start the simulation, a 
dialog where you can select what to save will appear. If you save to a 
binary file you can use the Post Process application to display the data 
when you have finished – see chapter 12 

Save All Data Saves all data 
Only plotted data Saves only data which is plotted (see below) 
Plot result If not selected no data will be plotted. If you save data to disk, and you are 

not interested in the plots, this will speed up the simulation. 
Max points on a 
curve 

Decides how many points a curve can contain. Each point on a curve is 
stored in memory during simulation. If you work with very long 
simulations you could eventually fill up the computer memory, if this 
number is too large. When this number is reached, the program starts to 
delete old points when a new point arrives. Note that if you do not save 
data to disk you will lose old data when this number is reached. 

Remember points If unchecked the points on curves you are not watching (i.e. unchecked 
curves in the curve window) will not be stored. 

Only plot at X pct. 
change 

If checked then points are only changed if the slope of the curve changes 
more that the percentage specified. 

Plot every X point If for example 10 then only every tenth point will be plottet 
Repeat simulation Specifies the number of times the simulation should be repeated. Together 

with Update initial values (see later) you can use this to get a periodic 
stationary solution. 

Infinite simulation If checked then the simulation runs until you press Stop. The plot window 
size defines the time range shown in the plot windows. 

Real time 
simulation 

If checked then the simulation will be run in real time. You can also 
specify how often the screen (plots and data) should be updated. When 
running real time simulations, you can control the speed of the simulation 
by adjusting the slider. The maximum speed depends on the screen update 
value you specify (it equals 1000·the screen update value). A speed of 1 
means that one simulated second will take 1 second in real time. A speed 
of 1000 means that 1000 simulated seconds will take 1 second in real time. 
The max speed will also depend on how fast the solver is able to actually 
solve the equations, so the value of the speed slider is not always accurate. 

Messages Decides how to display messages from the solver (debug messages will 
always be added to the Message Window).  

• None, no messages are displayed (if you after a simulation change 
Messages from None to Display you will be able to see debug 
messages). 

• Screen, messages are shown on screen 
• File, messages are saved to a file you specify. 



  10 WinDali Simulation Interface 69 

WinDali Morten Juel Skovrup 

Solver 
Use external static… Use an external static equations solver to solve the static equations at the 

initial point, and to solve the static equations the first time after a state 
shift. This functionality is included because the solver included in 
WinDali has a fast but not always stable static equations solver. 
Sometimes it is necessary to solve the static equations the first time by 
using the more stable (but also slower) external equation solver. After 
the first solution is obtained, the internal static equation solver is 
normally sufficient. 

External solver A list of external solvers that can be used 
Use fixed sample 
time 

If checked the solver will be forced to create a solution at the sample 
time you specify – i.e. if you specify a sample time of 10 seconds, then 
the solver will make a solution at Time=10, Time=20 etc. but it might 
also produce solutions in between the samples. 

 
The contents of the Solver page also depends on the solver you have loaded (see 10.4). 
 
Initial 
This page will only be created if the model has dynamic variables. The page allows you to 
change the default initial values for the dynamic variables. 
 
The program automatically creates a checkbox called Update initial values, that when checked:  

• Updates the initial values to the last solution point in the simulation when the simulation 
ends. 

• Updates the initial state to the state the model was in, when the simulation ended. 
 
Guesses 
The Guesses page will automatically be created if the model contains static variables. The page 
allows you to change the default guesses for the static variables in the different states. 
 
The program automatically creates a checkbox called Update guesses, that when checked 
updates the guesses on the static variables in all states. The guesses in a state are updated to the 
first solution found when the model was in that state. 
The page also has a checkbox called “No model guess”, which if checked prevent the loaded 
model from providing any guesses it might want to set (i.e. calls to SetGuess from the model are 
prevented). 
 
Results 
If the model includes extra variables that are not plotted, their value will be displayed on this 
page when the simulation stops. 
 
Cases 
- see chapter 10.3 



70 10 WinDali Simulation Interface 

WinDali Morten Juel Skovrup 

10.1 Menu commands 
File menu 
Item Explanation Shortcut/toolbar 
Open Model Open a new model. The icon on the toolbar keeps a list over 

previously opened models. 
 or  

Open Solver Loads a new Solver.  or  
New Clears the filename that the user previously has saved the 

settings under. 
Ctrl+N,  or  

Default Load the settings from the model-file and ignore if a default 
settings-file exists (see below) 

 or  

Open Open a settings file. A settings file includes all information 
of the parameters the user can change in the Simulation 
program. Settings files have extension .set 

Ctrl+O,  or  

Save Save settings. Ctrl+S,  or  
Save as Save settings with a new file name.  or  
Print Report Print report of a simulation. The report can contain settings 

and plots. The print will contain the current date and time. 
 or  

Exit Exit the simulation program.  or  
 
If you save a settings file with the same name as the model file (but with extension .set) this file 
will be loaded as default when the model is loaded. 
 
The Plot, Edit, Draw, View and Format menus are explained in the accompanying help file 
(select the Help|Plot menu), except for the following items in the plot menu: 
 
Plot menu 
Item Explanation Shortcut/toolbar 
Add plot Add a new plot page  
Delete plot Delete a plot page  
Data window Show/hide data window  
Second plot Show/hide the second plot on a page  
Create curve Create a curve by combining two existing curves (phase 

plot) 
 

Next plot Move to next plot F9 
Previous plot Move to previous plot F10 
 
Simulation menu 
Item Explanation Shortcut/toolbar 
Start Start simulation F2 /  
Step Make one step F3 /  
Pause Pause the simulation F4 /  
Stop Stop simulation F5 /  
 



  10 WinDali Simulation Interface 71 

WinDali Morten Juel Skovrup 

Tools menu 
Environment options See below 
Create distributable copy See chapter 13 
Configure tools Allow you to add program items to the Tools menu.  
 
The environments options dialog allows you to customize the Simulation Program. 
 

 
 

Figure 15. Environment Options. 
Preferences 
Default model directory Default location of your models 
Save messages to file 
and load in display after 
simulation 

Makes the simulation run faster. If the solver (Dali.sol) encounters 
problems it will react by outputting a lot of information. If you 
choose to display messages while the simulation runs (option 
unchecked) then the simulation might be very slow. 

 
Display 
Colored checkboxes Makes the checkboxes in the Curve Window the same color as the 

curves. 
Toolbar images Can be:  

    Default: Default windows icons Blue:  
    More colorful icons 

 
 



72 10 WinDali Simulation Interface 

WinDali Morten Juel Skovrup 

10.2 Online parameters 
Changes to parameters while the simulation is running will not affect the parameters in the 
model (at least not until the simulation is restarted). If you want to experiment with parameter 
changes while the simulation is running you need to do it through the Online parameters 
window. 
 
To change parameters you first have to select the parameters into the window by pressing Add 
online parameters. This will bring up a dialog where you select the parameters you want to vary. 
The type of parameters that can be varied are integer, float and values in enumerated choice 
parameters. 
 
When the simulation is running you enter new values for the parameters in the New column and 
press Update parameters when ready. This will change the columns so that the column 
containing the new parameters will become the Current column, and the old Current column will 
become the new New column. This enables you to keep track of the old parameter values while 
you enter the new values. 
 
Every time you press the Update parameters button, the changes will be recorded together with 
the time the changes was effected and a line will be drawn in all plots. The log can be printed 
together with plots and settings when you select File|Print report or you can print/save it directly 
from the Log tab in the Online parameters window. 

10.3 Varying parameters 
If you press the Vary button on the Cases page you can vary one or more of the floating point or 
integer parameters. This gives possibility to easily perform parameter studies on the model. If the 
model has a parameter called Pressure and you want to vary it form 1 to 10 with a step of 1, the 
simulation will automatically run 10 times with Pressure having the value 1,2,3…10. The results 
from the simulations are saved to one or more files. 
 
When you press the Vary button you will see the following dialog: 
 

 



  10 WinDali Simulation Interface 73 

WinDali Morten Juel Skovrup 

Figure 16. Varying parameters. 
In the dialog Volume is varied from 0.001 to 0.005 with step 0.001, i.e. the simulation has to run 
5 times or there are 5 cases. The dependent column allows you to select, which variables you 
want to save in the resulting files. You can specify to vary one or more parameters. If you for 
example also selected to vary Cold temperature from 20 to 25 with step 1, you would generate 
30 cases (and thereby 30 simulations): 
 

Volume Ambient Temperature 
0.001 20 
0.002 20 

: : 
0.005 20 
0.001 21 
0.002 21 

: : 
0.005 21 

: : 
: : 

0.001 25 
0.002 25 

: : 
0.005 25 

 
When you vary more than one parameter, then the cases are created by varying the parameters in 
the order they appear in the dialog (Volume is varied before Cold temperature, because Volume 
appears before Cold temperature in the dialog). 
When you select OK, you will see the following information in the Cases page: 
 

 
 

Figure 17. Info on Cases page. 
 
To actually run through the cases you have to check Run cases. 
 
When the simulation is started you will be asked how to save the data generated from the 
simulations: 



74 10 WinDali Simulation Interface 

WinDali Morten Juel Skovrup 

 
 

Figure 18. File identifiers and file type. 
 
For each of the dependent variables, you have specified, there will be created one or more files. 
For each dependent variable, you have to specify a unique identifier – in the dialog T has been 
assigned the identifier A. The file(s) created will have the name(s) File_ID_CaseNum.dat. If you 
select individual files (binary or ASCII), and follow the example from the dialogs, the files 
created will have the names: File_A_1.dat, File_A_2.dat, File_A_3.dat, File_A_4.dat and 
File_A_5.dat. 
 
You can select from these file types: 
 
Individual ASCII files 

Data will be saved to individual ASCII files, one file for each case, and one file for each 
dependent variable. The files has the following structure: 

Time1;Dep 
Time2;Dep 
… 
TimeN;Dep 
 

Where Dep is the dependent variable for that file, and ‘;’ represents the selected column 
separator. In the example above 5 files would be created, and one file would contain: 

Time1;T_1 
Time2;T_2 
… 
TimeN;T_N 

 



  10 WinDali Simulation Interface 75 

WinDali Morten Juel Skovrup 

One merged ASCII file 
Data for the different cases will be saved to one merged ASCII file for each dependent 
variable. One file has the following structure: 

Time1;InDep1;InDep2;…InDepM;Dep_case1 
Time2;… 
… 
TimeN;… 
Time1;InDep1;InDep2;…InDepM;Dep_case2 
… 
… 
TimeN;InDep1;InDep2;…InDepM;Dep_caseL 

 
Where InDep1…InDepM is the independent variables (i.e. the parameters that are varied). 
In the example above the file would contain: 

Time1;0.001;T_1 
Time2;0.001;T_2 
… 
TimeN;0.001;T_N 
Time1;0.002;T_1 
… 
… 
TimeN;0.005;T_N 

If Cold temperature also was varied the file would contain: 
Time1;0.001;20;T_1 
Time2;0.001;20;T_2 
… 
TimeN;0.001;20;T_N 
Time1;0.002;20;T_1 
… 
… 
TimeN;0.005;20;T_N 
Time1;0.001;21;T_1 
… 
… 
… 
TimeN;0.005;25;T_N 

 
Individual binary files 

Data is organized exactly as for individual ASCII files, except that the binary files do not 
contain line breaks or column separators. 
 

One merged binary file 
Data is organized exactly as for one merged ASCII file, except that the binary files do not 
contain line shifts or column separators. 

 
Binary files can be saved in Double or in Single format. Each value in the file takes up 8 bytes of 
space in Double format, while each value in the file takes up 4 bytes of space in Single format. 
All though Single format saves space, it also has fewer significant digits. 
 
When you select OK in the dialog in Figure 18, you will be asked to specify a directory where 
you want to save the data. When the simulations end, an information file called CaseInfo.txt is 
written to this directory. It contains information about the created data files. 



76 10 WinDali Simulation Interface 

WinDali Morten Juel Skovrup 

10.4 Dali solver 
The default solver used by the simulation program, is a slightly modified version of the solver 
described in [1]. The solver has the following characteristics: 
 

• Differential equation solver: 3 step, 3. order semi-implicit Runge Kutta (NT1 developed 
by Nørsett & Thomsen). Specially suited for stiff problems. 

• Algebraic equation solver: Modified Newton iteration, which includes  
o Convergence control (method for keeping the same Jacobian in several iterations)  
o Divergence control (extrapolation method which extrapolates the variables into 

the convergence area at beginning divergence). 
• Interpolation with 2. order splines, which is used for: 

o Guessing static variables in next step (by extrapolation). 
• The location of discontinuities is found using a secant-method. 

 
The following parameters can be set for the solver: 
 
Parameter Meaning 
Write Select between the following 

• Start, End and Disc. points: writes the solution at Start, End and 
Discontinuity points. 

• All: writes the solution at all points. 
• Debug: writes Jacobians, information on iterations, etc. This 

generates very extensive information. 
Max iterations Maximum number of iterations in solution of static equations. 
Max Jacobians Maximum number of Jacobians the solver is allowed to calculate each time 

the static equation set is solved. 
Relative error Convergence criterion. 
Max step size The maximum step size the solver is allowed to use. 
Min step size The minimum step size the solver is allowed to use. 
Max number of 
rejected steps 

How many times the solver is allowed to reject a step, change the step size 
a try another step. 

Use extern static 
solver 

The build in static equation solver is fast, but can also cause problems. 
More stable (but also slower) solvers can be selected. 

 
If you encounter problems solving the equations, a good idea is to try one or more of the 
following: 

• Decrease the maximum step size 
• Increase/decrease the Relative error 
• Try an extern static equation solver 
• Increase the number of iterations and/or the number of Jacobians. 

 
When an extern static equation solver is used, the maximum number of iterations should be 
increased. The maximum number of Jacobians has no influence when an extern static equation 
solver is used. 
 



  11 Using Profiles in models 77 

WinDali Morten Juel Skovrup 

11 Using Profiles in models 
When you create model it often happens that parameters in the model are not constant, but 
instead are in the form of time-series. This could for example be a load profile on a display case 
in a supermarket. 
 
To easily be able to include such profiles in your model, WinDali has a helper-tool called Profile 
Editor you can use to create profiles, and a corresponding Pascal unit called CmjsProfile.pas 
you can include in your model to use the profiles. 

11.1 Generating profiles 
When you execute the Profile Editor application, the following window appears: 
 

 
 
You start by selecting the duration of the profile (when you simulate the profile will be looped) 
and by specifying the interval you want to provide data for. 
 
When you press <Generate> you will see the following: 



78 11 Using Profiles in models 

WinDali Morten Juel Skovrup 

 
 
Note that now a table is created where you can enter values for the profile (in percent of a value 
you specify when you include the profile in a model), and that the profile will automatically be 
shown in the plot. 
 
When you have entered the values, press <Save> to save the profile. 
 
The format of a profile file is a simple ASCII file with the four first lines specifying the profile 
duration and the time interval: 
 
The first line is equal to: 

0: If duration is one minute 
1: If duration is one hour 
2: If duration is one day 
3: If duration is one week 
4: If duration is one month 
5: If duration is one year 

The second line is always equal to 1 (reserved for future use) 
The third line is equal to 
 0: If time interval is given in seconds 

1: If time interval is given in minutes 
2: If time interval is given in hours 
3: If time interval is given in days 
4: If time interval is given in weeks 
5: If time interval is given in months 

The fourth line is equal to the specified time interval. 
 
The rest of the file is just the entered percent-values – one value on each line. 



  11 Using Profiles in models 79 

WinDali Morten Juel Skovrup 

11.2 Using profiles in a model 
Included in the demos is a modeified example of the "Cooling of Block" example, where a 
profile is used for the ambient temperature. This demo illustrates several points: 
 

• Using an Action button to open a file from your model 
• Changing the caption of an Info-label 
• Loading and using a profile 
• Using OnSaveSettings and OnLoadSettings to store information in files created from 

within the model. 
 
When you use profiles then remember to: 

1. Create the profile object in SetupProblem  
2. Initialize the profile in PreCalc 

 
The profile-object uses a linear interpolation to find profile values at each time step. If you want 
to improve this the change the code in CmjsProfile.pas located in the \Lib directory. 



80 12 Using Post Process 

WinDali Morten Juel Skovrup 



  12 Using Post Process 81 

WinDali Morten Juel Skovrup 

12 Using Post Process 
Post Process is a simple application you can use to display a binary data file. The program looks 
somewhat like the Simulation Interface program without the parameter pages: 
 

 
 
The files you can open in Post Process must be files created when you select "Save data to 
ASCII or binary file" in the Simulation Interface program, and thereafter select a binary file. 
 



82 12 Using Post Process 

WinDali Morten Juel Skovrup 

 
 



  13 Distributing models 83 

WinDali Morten Juel Skovrup 

13 Distributing models 
You can easily distribute your models by going through the following steps:  
 

• In the Simulation Program go to the Tools menu and select Create distributable copy. 
• You will be prompted to select a directory where the files should be placed. 
• All necessary files will be copied to that directory – including the current loaded model. 
• To install the model on a different PC, just copy the files to a directory of your choice. 
• To run the model, start Simulation.exe and load the .mdl file. 
• If you want to distribute several models, just include the .mdl and .set files for those 

models. 
 
The current settings file will also be included with the files. Remember that if you save a settings 
file with the same name as the model file (but with extension .set) this file will be loaded as 
default when the model is loaded. 
 
The files that should (minimum) be in the distribution are: 

• Simulation.exe Main program 
• Dali.sol  The default solver 
• NonLin.dll  DLL with external static equation solvers 
• RefrigFPC.dll DLL containing refrigerant equations 
• WDModelUtils.dll DLL used by some models 
• SimIntPlt.hlp Help file for main program 
• SimIntPlt.cnt Used by help file. 
• ‘.mdl’ and ‘.set’ files. 

 



84 13 Distributing models 

WinDali Morten Juel Skovrup 

 



  14 References 85 

WinDali Morten Juel Skovrup 

14 References 
[1] Askjær K.A. – Numeriske metoder anvendt i DALI. En Differential-Algebraisk 

ligningsløser; Master thesis; Refrigeration Laboratory, Technical University of Denmark, 
November 1985. 

[2] Free Pascal Compiler, http://www.freepascal.org/ 
[3] Borland® Delphi™ 5 – Object Pascal Language guide; Inprise Corporation. 1999. 
 



86 14 References 

WinDali Morten Juel Skovrup 

 
 
 



  Appendix A Used file types 87 

WinDali Morten Juel Skovrup 

Appendix A Used file types 
The following list shows the file types used in WinDali: 
 
Name / Extension Content 
*.ppr A model file. Contains among other things a list of the pascal 

source-code files included in a model. 
*.pp,*.pas Pascal source-code files.These files contains the model and 

other code. The model file binds these files together. 
*.inc Include files used by the *.pp and *.pas files. 
*.ppw, *.ow, *.cfg, *.err Files created during compilation. These files can safely be 

deleted. 
*.mdl Compiled model file. Ready to use in the simulation program. 
*.sol File containing a solver, which can be used by WinDali. 
*.set Settings file created by the Simulation program. Is used when 

settings and parameters for a simulation are saved. 
nonlinerr.txt File created if you use the external static equation solver and 

an error occurs. You can safely delete this file. 
 



88 Appendix A Used file types 

WinDali Morten Juel Skovrup 

 



 Appendix B Files and directories created during installation 89 

WinDali Morten Juel Skovrup 

Appendix B Files and directories created during installation 
All programs in WinDali are enabled to run in mult-user environments – and also on PC's where 
the user is not logged in as administrator. This means that all files/directories where the user 
should have write access are placed in the user's profile. 
 
All files in the basic installation directory (default c:\WinDali) can be regarded as read-only. 
 
During installation WinDali creates the following directories: 
 
All Users\Application Data\IPU\WinDali\Lib 
All Users\Application Data\IPU\WinDali\Templates 
 
where " All Users\Application Data" is the path to the users application data directory, 
normally something like c:\Documents and Settings\All Users\Application Data 
 
Note that this directory is hidden as default, so if you want to browse it, you should enable 
"Show hidden files and folders" in Windows Explorer, and press <Apply to All Folders> (Select 
Tools|Folder Options menu and go to the View tab within Windows Explorer). 
 
As default new models are created in the \CurrentUser\My Douments\Models folder and the 
demos are placed in the All users\Douments\Models\Demo folder (during installation a link to 
the demo folder will be placed in the \CurrentUser\My Douments\Models folder). 
 
You can easily change the default model folder, in the Model Editor and the Simulation Interface 
program (in both cases go to the Tools|Environment Options menu). 
 
When you run WinDali, all internally used setting files will be placed in the 
\CurrentUser\Application Data\IPU\WinDali\ folder. 
 


	Disclaimer
	Contact information

	Version information
	Changes in version 3.00
	Changes in version 2.20
	Changes in version 2.10

	Introduction
	Typing convention
	Terms used in this document

	System structure
	Creating a simple model
	SetupProblem
	ModelEquations
	EndCalc
	Compiling
	Simulation

	Model file format
	Common parameters and datatypes
	SetupProblem
	SetupModel
	SetupState
	SetTimeFactor
	SolverSettings
	Dynamic variables
	States
	Static variables
	Parameter pages
	Initial Parameters
	Floating point parameters
	Integer parameters
	Boolean parameters
	List parameters
	Enumerated parameters
	Enumerated choice parameters
	Explicit variables
	Action buttons
	Info Labels
	HideSampleTime
	Model help file

	PreCalc
	SetStartState
	AddExplicitVar
	SetSampleTime

	ModelEquations
	StateShift
	OnStateChange
	OnSolution
	OnSample
	EndCalc
	OnQuit
	OnUIValueChange
	Running simulations from the model

	OnSaveSettings
	OnLoadSettings
	Using Initial parameters
	SetInitial
	SetGuess
	AddDynVar
	AddStatVar

	Mathematical text
	Debugging

	Common problems
	Using refrigerant equations
	WinDali Model Editor
	Compiler Options
	Environment Options

	WinDali Simulation Interface
	Menu commands
	Online parameters
	Varying parameters
	Dali solver

	Using Profiles in models
	Generating profiles
	Using profiles in a model

	Using Post Process
	Distributing models
	References
	Used file types
	Files and directories created during installation

